Advertisement

On Multicasting Steiner Trees for Delay and Delay Variation Constraints

  • Moonseong Kim
  • Young-Cheol Bang
  • Hyunseung Choo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4208)

Abstract

The objective of multicasting is to find a tree that has a minimum total cost, which called the Steiner tree. Multicast routing algorithms should support the required QoS. There are two important Quality of Service (QoS) parameters that need to be guaranteed in order to support the real time and multimedia applications. Firstly, we consider the delay parameter where, the data sent from source need to reach destinations within a certain time limit (delay bound). Secondly, in addition to the delay constraint, we add the delay variation constraint. The delay variation constraint is a bound on the delay difference between any two destinations. Our research subject is Delay and delay Variation Bounded Steiner Tree (DVBST) problem. The problem has been proved to NP-complete. In this paper, we propose efficient algorithm for DVBST. Simulations demonstrate that our algorithm is better in terms of tree cost as compared to the existing algorithms.

Keywords

Destination Node Random Graph Steiner Tree Delay Variation Multicast Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballardie, A., Cain, B., Zhang, Z.: Core Based Trees (CBT version 3) Multicast Routing protocol specification, Internet Draft, IETF (August 1998)Google Scholar
  2. 2.
    Bang, Y.-C., Chung, S.-T., Kim, M., Joo, S.-S.: On Multicast Communications with Minimum Resources. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 4–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Calvert, K.L., Doar, M., Doar, M.: Modelling Internet Topology. IEEE Communications Magazine, 160–163 (June 1997)Google Scholar
  4. 4.
    Doar, M.: Multicast in the ATM environment, Ph.D dissertation, Cambridge University, Computer Lab. (September 1993)Google Scholar
  5. 5.
    Doar, M.: A Better Mode for Generating Test Networks. In: IEEE Proc. GLOBECOM 1996, pp. 86–93 (1996)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco (1979)MATHGoogle Scholar
  7. 7.
    Hwang, F.K., Richards, D.: Steiner Tree Problems. Networks 22, 55–89 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jho, G., Kim, M., Choo, H.: Source-Based Minimum Cost Multicasting: Intermediate-Node Selection with Potentially Low Cost. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 808–819. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thather, J.W. (eds.) Complexity of computer computations, pp. 85–104. Plenum Press, New York (1970)Google Scholar
  10. 10.
    Kim, M., Bang, Y.-C., Choo, H.: Efficient Algorithm for Reducing Delay Variation on Bounded Multicast Trees. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 440–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Kim, M., Bang, Y.-C., Choo, H.: On Algorithm for Efficiently Combining Two Independent Measures in Routing Paths. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 989–998. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Kim, M., Bang, Y.-C., Choo, H.: On Estimation for Reducing Multicast Delay Variation. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 117–122. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Kim, M., Bang, Y.-C., Yang, J.S., Choo, H.: An Efficient Multicast Tree with Delay and Delay Variation Constraints. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 1129–1136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15, 141–145 (1981)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the Web graph. In: Proc. 41st Annual Symposium on Foundations of Computer Science, pp. 57–65 (2000)Google Scholar
  16. 16.
    Rodionov, A.S., Choo, H.: On Generating Random Network Structures: Connected Graphs. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 483–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Rouskas, G.N., Baldine, I.: Multicast routing with end-to-end delay and delay variation constraints. IEEE J-SAC 15(3), 346–356 (1997)Google Scholar
  18. 18.
    Sheu, P.-R., Chen, S.-T.: A Fast and Efficient Heuristic Algorithm for the Delay- and Delay Variation-Bounded Multicast Tree Problem. Computer Communications 25(8), 825–833 (2002)CrossRefGoogle Scholar
  19. 19.
    Takahashi, H., Matsuyama, A.: An Approximate Solution for the Steiner Problem in Graphs. Mathematica Japonica 24(6), 573–577 (1980)MATHMathSciNetGoogle Scholar
  20. 20.
    Toh, C.-K.: Performance Evaluation of Crossover Switch Discovery Algorithms for Wireless ATM LANs. In: IEEE Proc. INFOCOM 1996, pp. 1380–1387 (1996)Google Scholar
  21. 21.
    Wang, B., Hou, J.C.: Multicast Routing and Its QoS Extension: Problems, Algorithms, and Protocols. IEEE Network 14(1), 22–36 (2000)CrossRefGoogle Scholar
  22. 22.
    Waxman, B.W.: Routing of multipoint connections. IEEE JSAC 6(9), 1617–1622 (1988)Google Scholar
  23. 23.
    Winter, P.: Steiner Problem in Networks: A Survey. Networks 17, 129–167 (1987)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an Internetwork. In: IEEE Proc. INFOCOM 1996, pp. 594–602 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Moonseong Kim
    • 1
  • Young-Cheol Bang
    • 2
  • Hyunseung Choo
    • 1
  1. 1.School of Information and Communication EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Department of Computer EngineeringKorea Polytechnic UniversityGyeonggi-DoKorea

Personalised recommendations