Design and Analysis of High Performance TCP

  • TaeJoon Park
  • JaeYong Lee
  • ByungChul Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4208)


Traditional TCP implementations have an under-utilization problem in high bandwidth delay product networks. This paper proposes a new congestion control mechanism, a high performance TCP (HP-TCP), to solve the under-utilization problem. The congestion avoidance period of the HP-TCP control is divided into linear and exponential growth phases, where the linear increase phase is similar to that of the legacy TCP; when there is no queueing delay in the linear increase phase, the congestion window grows exponentially to fill a large pipe quickly. The exponential increase phase can cause serious problems of overshooting the network capacity, which results in massive retransmissions and low bandwidth utilization. To solve this problem, the proposed algorithm uses the RTT status and the estimated bandwidth to prevent packet losses during the exponential growth phase. The simulation results show that the HP-TCP improves the convergence time and throughput performance of the TCP in high bandwidth delay product networks.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allcock, W., et al.: GridFTP: Protocol extensions to FTP for the Grid. GFD-R.020 (2004)Google Scholar
  2. 2.
    Kim, S., Park, S., Moon, J., Lee, H.: A low-crosstalk design of 1.25 Gbps optical triplexer module for FTTH systems. ETRI Journal 28(1), 9–16 (2006)CrossRefGoogle Scholar
  3. 3.
    IETF RFC 793: Transmission Control Protocol (1981)Google Scholar
  4. 4.
    IETF RFC 2581: TCP Congestion Control (1999)Google Scholar
  5. 5.
    IETF RFC 3649: HighSpeed TCP for large congestion windows (2003)Google Scholar
  6. 6.
    Jin, C., Wei, D.X., Low, S.H.: FAST TCP: Motivation, architecture, algorithms, performance. In: Proceeding of IEEE INFOCOM 2004, vol. 4, pp. 2490–2501 (2004)Google Scholar
  7. 7.
    Wang, R., Pau, G., Yamada, K., Sanadidi, M.Y., Gerla, M.: TCP startup performance in large bandwidth delay networks. In: Proceeding of IEEE INFOCOM 2004, vol. 2, pp. 796–805 (2004)Google Scholar
  8. 8.
    Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M.Y., Wang, R.: TCP Westwood: Bandwidth estimation for enhanced transport over wireless links. In: Proceeding of ACM/IEEE Mobi-Com (2001)Google Scholar
  9. 9.
    Mo, J., La, R.J., Anantharam, V., Walrand, J.: Analysis and comparison of TCP Reno and Vegas. In: Proceedings of IEEE INFOCOM (1999)Google Scholar
  10. 10.
    Giordano, S., Procissi, G., Russo, F., Secchi, R.: On the use of pipesize estimators to improve TCP transient behavior. In: Proceedings of ICC (2005)Google Scholar
  11. 11.
    Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling tcp reno performance throughput: A simple model and its empirical validation. IEEE/ACM Transactions on Networking 8 (2000)Google Scholar
  12. 12.
    The network simulator ns-2, Available:
  13. 13.
    Jain, R.: The art of computer systems performance analysis: techniques for experimental design, measurement, simulation and modeling, New York. John Wiley, Chichester (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • TaeJoon Park
    • 1
  • JaeYong Lee
    • 2
  • ByungChul Kim
    • 2
  1. 1.Carrier Class Ethernet Team, ETRIDaejeonKorea
  2. 2.Department of Infocom EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations