Self-optimization of MPI Applications Within an Autonomic Framework

  • M. Iannotta
  • E. Mancini
  • M. Rak
  • U. Villano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4208)


An existing autonomic framework (MAWeS) can be used to provide run-time self-optimization for distributed applications. This paper introduces a new MAWeS Component that provides an interface for MPI applications. As case study, we will present the implementation of a dynamically-reconfigurable n-body solver, evaluating its obtained performance with and without the MAWeS framework under several different working load conditions.


System Load Autonomic Computing Application Execution Monitor Monitor Parallel Computing Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    IBM Corp.: An architectural blueprint for autonomic computing. IBM Corp., USA (2004),
  3. 3.
    Jacob, B., Basu, S., Tuli, A., Witten, P.: A First Look at Solution Installation for Autonomic Computing. IBM Corp. (2004),
  4. 4.
    Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A Pratical Guide to IBM Autonomic Computing Toolkit. IBM Corp. (2004),
  5. 5.
    Birman, K.P., van Renesse, R., Vogels, W.: Adding high availability and autonomic behavior to web services. In: Proc. of 26th International Conference on Software Engineering (ICSE 2004), Edinburgh, United Kingdom, pp. 17–26. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Liu, A., Qu, W.: Software architecture design of an autonomic system. In: Proc of 5th Australasian Workshop on Software and System Architectures, Melbourne, Australia, pp. 5–11 (2004)Google Scholar
  7. 7.
    Mancini, E., Rak, M., Torella, R., Villano, U.: Predictive autonomicity of web services in the MAWeS framework. Journal of Computer Science 2 (2006)Google Scholar
  8. 8.
    Mancini, E., Rak, M., Torella, R., Villano, U.: A simulation-based framework for autonomic web services. In: Procs. of the 11th Int. Conference on Parallel and Distributed Systems, Fukuoka, Japan, pp. 433–437 (2005)Google Scholar
  9. 9.
    Mancini, E., Rak, M., Villano, U.: Autonomic web service development with MAWeS. In: Proc. of 20th International Conference on Advanced Information Networking and Applications (AINA 2006), Vienna, Austria, pp. 504–508 (2006)Google Scholar
  10. 10.
    Russell, L.W., Morgan, S.P., Chron, E.G.: Clockwork: A new movement in autonomic systems. IBM Systems Journal 42(1), 77–84 (2003)CrossRefGoogle Scholar
  11. 11.
    Mazzocca, N., Rak, M., Villano, U.: The transition from a PVM program simulator to a heterogeneous system simulator: The HeSSE project. In: Dongarra, J., Kacsuk, P., Podhorszki, N. (eds.) PVM/MPI 2000. LNCS, vol. 1908, pp. 266–273. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Mazzocca, N., Rak, M., Villano, U.: MetaPL a notation system for parallel program description and performance analysis parallel computing technologies. In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 80–93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Mazzocca, N., Rak, M., Villano, U.: The MetaPL approach to the performance analysis of distributed software systems. In: Proc. of 3rd International Workshop on Software and Performance (WOSP 2002), pp. 142–149. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  14. 14.
    Mancini, E., Mazzocca, N., Rak, M., Villano, U.: Integrated tools for performance-oriented distributed software development. In: Proc. SERP 2003 Conference, Las Vegas (NE), USA, vol. 1, pp. 88–94 (2003)Google Scholar
  15. 15.
    Mancini, E., Rak, M., Torella, R., Villano, U.: Self-optimizing mpi applications: A simulation-based approach. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 143–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Greengard, L.: The numerical solution of the n-body problem. Comput. Phys. 4, 142–152 (1990)Google Scholar
  17. 17.
    Tapus, C., Chung, I.-H., Hollingsworth, J.K.: Active harmony: Towards automated performance tuning. In: Supercomputing Conference, pp. 44–54 (2002)Google Scholar
  18. 18.
    Ribler, R.L., Vetter, J.S., Simitci, H., Reed, D.A.: Autopilot: adaptive control of distributed applications. In: 7th Int. Symp. on High Performance Distributed Computing, pp. 172–179 (1998)Google Scholar
  19. 19.
    Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In: Supercomputing Conference (1998)Google Scholar
  20. 20.
    Berman, F., Wolski, R.: Scheduling from the perspective of the application. In: 5th Int. Symp. on High Performance Distributed Computing, pp. 100–111 (1996)Google Scholar
  21. 21.
    Wolski, R.: Forecasting network performance to support dynamic scheduling using the network weather service. In: 6th Int. Symp. on High Performance Distributed Computing, pp. 316–325 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Iannotta
    • 1
  • E. Mancini
    • 1
  • M. Rak
    • 2
  • U. Villano
    • 1
  1. 1.Università del SannioBeneventoItaly
  2. 2.Seconda Università di NapoliAversa (CE)Italy

Personalised recommendations