Kernels: Annotated, Proper and Induced

  • Faisal N. Abu-Khzam
  • Henning Fernau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4169)


The notion of a “problem kernel” plays a central role in the design of fixed-parameter algorithms. The \(\mathcal{FPT}\) literature is rich in kernelization algorithms that exhibit fundamentally different approaches. We highlight these differences and discuss several generalizations and restrictions of the standard notion.


Master Problem Vertex Cover Parameterized Problem Kernel Size Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abu-Khzam, F.N., Langston, M.A.: A direct algorithm for the parameterized face cover problem. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 213–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Alber, J., Dorn, B., Niedermeier, R.: A general data reduction scheme for domination in graphs. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 137–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 269–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Dehne, F., Fellows, M.R., Fernau, H., Prieto, E., Rosamond, F.A.: nonblocker: Parameterized algorithmics for minimum dominating set. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 237–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Annals of Mathematics 162, 439–485 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 320–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: A framework for systematically confronting computational intractability. In: Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future, pp. 49–99 (1999)Google Scholar
  9. 9.
    Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-sided crossing minimization revisited. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 332–344. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fernau, H.: A top-down approach to search-trees: Improved algorithmics for 3-Hitting Set. Technical Report TR04-073, Electronic Colloquium on Computational Complexity ECCC (2004)Google Scholar
  11. 11.
    Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach. Habilitationsschrift, Universität Tübingen, Germany (2005)Google Scholar
  12. 12.
    Fernau, H.: Parameterized algorithmics for linear arrangement problems. In: CTW 2005: Workshop on Graphs and Combinatorial Optimization, University of Cologne, Germany, pp. 27–31 (2005) (Long version submitted)Google Scholar
  13. 13.
    Fernau, H.: Two-layer planarization: improving on parameterized algorithmics. Journal of Graph Algorithms and Applications 9, 205–238 (2005)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39, 321–347 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem parameterized above guaranteed value. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 356–367. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-Hitting Set. Journal of Discrete Algorithms 1, 89–102 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Niedermeier, R., Rossmanith, P.: On efficient fixed parameter algorithms for weighted vertex cover. Journal of Algorithms 47, 63–77 (2003)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Serna, M., Thilikos, D.M.: Parameterized complexity for graph layout problems. EATCS Bulletin 86, 41–65 (2005)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Faisal N. Abu-Khzam
    • 1
  • Henning Fernau
    • 2
  1. 1.Division of Comp.Sci. & Math.Lebanese American UniversityBeirutLebanon
  2. 2.FB 4—Abteilung InformatikUniversität TrierTrierGermany

Personalised recommendations