Towards a Taxonomy of Techniques for Designing Parameterized Algorithms

  • Christian Sloper
  • Jan Arne Telle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4169)


A survey is given of the main techniques in parameterized algorithm design, with a focus on formal descriptions of the less familiar techniques. A taxonomy of techniques is proposed, under the four main headings of Branching, Kernelization, Induction and Win/Win. In this classification the Extremal Method is viewed as the natural maximization counterpart of Iterative Compression, under the heading of Induction. The formal description given of Greedy Localization generalizes the application of this technique to a larger class of problems.


Planar Graph Vertex Cover Reduction Rule Local Reduction Hash Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACFL04]
    Abu-Khzam, F., Collins, R., Fellows, M., Langston, M.: Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments. In: Proceedings ALENEX 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)Google Scholar
  2. [ABFKN02]
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. [AYZ95]
    Alon, N., Yuster, R., Zwick, U.: Color-Coding. Journal of the ACM 42(4), 844–856 (1995)MATHCrossRefMathSciNetGoogle Scholar
  4. [CFJ04]
    Chor, B., Fellows, M., Juedes, D.W.: Linear Kernels in Linear Time, or How to Save k Colors in O(n 2) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)Google Scholar
  5. [DF99]
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  6. [DFR03]
    Dehne, F., Fellows, M., Rosamond, F.: An FPT Algorithm for Set Splitting. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353. Springer, Heidelberg (2004)Google Scholar
  7. [DFRS04]
    Dehne, F., Fellows, M., Rosamond, F.A., Shaw, P.: Greedy Localization, Iterative Compression and Modeled Crown Reductions: New FPT Techniques and Improved Algorithms for Max Set Splitting and Vertex Cover. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 271–280. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [DH05]
    Demaine, E., Hajiaghayi, M.: Bidimensionality: New Connections between FPT Algorithms and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), January 23-25, pp. 590–601 (2005)Google Scholar
  9. [F03]
    Fellows, M.R.: Blow-Ups, Win/Win’s, and Crown Rules: Some New Directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. [FKNRSTW04]
    Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U., Thilikos, D.M., Whitesides, S.H.: Faster fixed-parameter tractable algorithms for matching and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. [FHRST04]
    Fellows, M., Heggernes, P., Rosamond, F.A., Sloper, C., Telle, J.A.: Finding k disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. [FMRS00]
    Fellows, M.R., McCartin, C., Rosamond, F., Stege, U.: Coordinatized Kernels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf Spanning Tree and Other Problems. In: Foundations of Software Technology and Theoretical Computer Science (2000)Google Scholar
  13. [JZC04]
    Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing. Journal of Algorithms 50(1), 106–117 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. [K00]
    Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathematics 107, 99–138 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. [K03]
    Kullmann, O.: Lean clause-sets: Generalizations of minimally unsatisfiable clause-sets. Discrete Applied Mathematics 130, 209–249 (2003)MATHCrossRefMathSciNetGoogle Scholar
  16. [MPS04]
    Mathieson, L., Prieto, E., Shaw, P.: Packing Edge Disjoint Triangles: A Parameterized View. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. [M89]
    Manber, U.: Introduction to algorithms, a creative approach. Addison Wesley Publishing, Reading (1989)MATHGoogle Scholar
  18. [MR99]
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of Algorithms 31(2), 335–354 (1999)MATHCrossRefMathSciNetGoogle Scholar
  19. [N02]
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, a book version was recently announced by Oxford University Press (manuscript, 2002)Google Scholar
  20. [NR00]
    Niedermeier, R., Rossmanith, P.: A general method to speed up fixed parameter algorithms. Information Processing Letters 73, 125–129 (2000)MATHCrossRefMathSciNetGoogle Scholar
  21. [NT75]
    Nemhauser, G., Trotter Jr., L.: Vertex Packings: Structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)MATHCrossRefMathSciNetGoogle Scholar
  22. [P04]
    Prieto, E.: The Method of Extremal Structure on the k-Maximum Cut Problem. In: Proc. Computing: The Australasian Theory Symposium (CATS 2005). Conferences in Research and Practice in Information Technology, vol. 41, pp. 119–126 (2005)Google Scholar
  23. [P05]
    Prieto, E.: Systematic kernelization in FPT algorithm design. PhD thesis, University of Newcastle, Australia (2005)Google Scholar
  24. [PS03]
    Prieto, E., Sloper, C.: Either/Or: Using Vertex Cover Structure in Designing FPT-Algorithms — the Case of k-Internal Spanning Tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. [PS04]
    Prieto, E., Sloper, C.: Looking at the stars. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 138–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. [PS05]
    Prieto, E., Sloper, C.: Reducing to Independent Set Structure — the Case of k -Internal Spanning Tree. Nordic Journal of Computing 12(3), 308–318 (2005)MATHMathSciNetGoogle Scholar
  27. [RS99]
    Robertson, N., Seymour, P.D.: Graph Minors XX Wagner’s conjecture (to appear)Google Scholar
  28. [RSV03]
    Reed, B., Smith, K., Vetta, A.: Finding Odd Cycle Transversals. Operations Research Letters 32, 299–301 (2003)CrossRefMathSciNetGoogle Scholar
  29. [S06]
    Sloper, C.: Techniques in Parameterized Algorithm Design. PhD thesis, University of Bergen (2006),
  30. [SS90]
    Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash functions. SIAM Journal of Computing 19(5), 775–786 (1990)MATHCrossRefMathSciNetGoogle Scholar
  31. [ST94]
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Sloper
    • 1
  • Jan Arne Telle
    • 1
  1. 1.Department of InformaticsUniversity of BergenNorway

Personalised recommendations