Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual

  • Jiong Guo
  • Rolf Niedermeier
  • Sebastian Wernicke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4169)


We provide first-time fixed-parameter tractability results for the NP-complete problems Maximum Full-Degree Spanning Tree and Minimum-Vertex Feedback Edge Set. These problems are dual to each other: In Maximum Full-Degree Spanning Tree, the task is to find a spanning tree for a given graph that maximizes the number of vertices that preserve their degree. For Minimum-Vertex Feedback Edge Set the task is to minimize the number of vertices that end up with a reduced degree. Parameterized by the solution size, we exhibit that Minimum-Vertex Feedback Edge Set is fixed-parameter tractable and has a problem kernel with the number of vertices linearly depending on the parameter k. Our main contribution for Maximum Full-Degree Spanning Tree, which is W[1]-hard, is a linear-size problem kernel when restricted to planar graphs. Moreover, we present subexponential-time algorithms in the case of planar graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for Dominating Set. Journal of the ACM 51, 363–384 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bhatia, R., Khuller, S., Pless, R., Sussmann, Y.: The full degree spanning tree problem. Networks 36, 203–209 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Broersma, H.J., Huck, A., Kloks, T., Koppius, O., Kratsch, D., Müller, H., Tuinstra, H.: Degree-preserving trees. Networks 35, 26–39 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 269–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Dehne, F.K.H.A., Fellows, M.R., Fernau, H., Prieto, E., Rosamond, F.A.: Nonblocker: Parameterized algorithmics for minimum dominating set. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 237–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)Google Scholar
  8. 8.
    Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Proc. 1st ACiD, pp. 1–41 (2005)Google Scholar
  9. 9.
    Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized Kernels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf Spanning Tree and Other Problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces: Linear kernel and exponential speed-up. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM Journal on Computing 32(2), 470–487 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lewinter, M.: Interpolation theorem for the number of degree-preserving vertices of spanning trees. IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications 34(2), 205 (1987)MathSciNetGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ormsbee, L.E.: Implicit network calibration. Journal of Water Resources Planning Management 115, 243–257 (1989)CrossRefGoogle Scholar
  16. 16.
    Ormsbee, L.E., Wood, D.J.: Explicit pipe network calibration. Journal of Water Resources Planning Management 112, 116–182 (1986)Google Scholar
  17. 17.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jiong Guo
    • 1
  • Rolf Niedermeier
    • 1
  • Sebastian Wernicke
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations