The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel

  • Kevin Burrage
  • Vladimir Estivill-Castro
  • Michael Fellows
  • Michael Langston
  • Shev Mac
  • Frances Rosamond
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4169)


Resolving a noted open problem, we show that the Undirected Feedback Vertex Set problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G,k) to a decision-equivalent simplified instance (G′,k′) where k′ ≤k, and the number of vertices of G′ is bounded by a polynomial function of k. Our main result shows an O(k 11) kernelization bound.


Polynomial Time Vertex Cover Internal Vertex Reduction Rule Vertex Cover Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACFLSS04]
    Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.: Kernelization algorithms for the vertex cover problem: theory and experiments. In: Arge, L., Italiano, G., Sedgewick, R. (eds.) Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX) Proc. Applied Mathematics 115, New Orleans, January 2004. ACM/SIAM (2004)Google Scholar
  2. [AFN04]
    Alber, J., Fellows, M., Niedermeier, R.: Polynomial time data reduction for dominating set. Journal of the ACM 51, 363–384 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  3. [BBF99]
    Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics 12, 289–297 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [BBG00]
    Becker, A., Bar-Yehuda, R., Geiger, D.: Random algorithms for the loop cutset problem. Journal of Artificial Intelligence Research 12, 219–234 (2000)zbMATHMathSciNetGoogle Scholar
  5. [BKV05]
    Bodlaender, H., Koster, A., van den Eijkhof, F.: Preprocessing rules for triangulation of probabilistic networks. Computational Intelligence 21, 286–305 (2005)CrossRefMathSciNetGoogle Scholar
  6. [Bod94]
    Bodlaender, H.: On disjoint cycles. International Journal of Foundations of Computer Science 5, 59–68 (1994)zbMATHCrossRefGoogle Scholar
  7. [CFJ04]
    Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save k colors in O(n 2) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [DF92]
    Downey, R., Fellows, M.: Fixed-parameter tractability and completeness. Congressus Numerantium 87, 161–187 (1992)MathSciNetGoogle Scholar
  9. [DF99]
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  10. [DFLRS05]
    Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O *(2O(k)) FPT algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [DFRS04]
    Dehne, F., Fellows, M., Rosamond, F.A., Shaw, P.: Greedy localization, iterative compression and modeled crown reductions: new FPT techniques, an improved algorithm for set splitting and a novel 2k kernelization for vertex cover. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 271–280. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. [FG06]
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  13. [FGW04]
    Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log2 n nondeterministic bits. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 555–567. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. [FPR99]
    Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. A, pp. 209–258. Kluwer, Dordrecht (1999)Google Scholar
  15. [GGHNW05]
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Improved fixed-parameter algorithms for two feedback set problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 158–169. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  17. [Guo06]
    Guo, J.: Algorithm design techniques for parameterized problems. Ph.D. Thesis, Friedrich-Schiller-Universität, Jena (2006)Google Scholar
  18. [KPS04]
    Kanj, I.A., Pelsmajer, M.J., Schaefer, M.: Parameterized algorithms for feedback vertex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–247. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. [LS05]
    Lokshtanov, D., Sloper, C.: Fixed-parameter set-splitting, linear kernel and improved running time. In: Algorithms and Complexity in Durham 2005: Proceedings of the First ACiD Workshop. Texts in Algorithmics, vol. 4, pp. 105–113. King’s College Press (2005)Google Scholar
  20. [Nie02]
    Niedermeier, R.: Invitation to fixed-parameter algorithms, Habilitationschrift, University of Tubingen (2002) (Electronic file available from R. Niedermeier)Google Scholar
  21. [Nie06]
    Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  22. [NT75]
    Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [Pr05]
    Prieto-Rodriguez, E.: Systematic kernelization in FPT algorithm design. Ph.D. Thesis, School of EE&CS, University of Newcastle, Australia (2005)Google Scholar
  24. [RSS02]
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. [RSS05]
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster algorithms for feedback vertex set. In: Proceedings of the 2nd Brazilian Symposium on Graphs, Algorithms and Combinatorics, GRACO 2005, Angra dos Reis (Rio de Janeiro), Brazil, April 27-29, 2005. Electronic Notes in Discrete Mathematics. Elsevier, Amsterdam (2005)Google Scholar
  26. [Slo05]
    Sloper, C.: Techniques in parameterized algorithm design. Ph.D. Thesis, Department of Informatics, University of Bergen, Norway (2005)Google Scholar
  27. [Wei98]
    Weihe, K.: Covering trains by stations, or the power of data reduction. In: Proc. ALEX 1998, pp. 1–8 (1998)Google Scholar
  28. [Wei00]
    Weihe, K.: On the Differences Between ‘Practical’ and ‘Applied’ (invited paper). In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 1–10. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. [Wey04]
    Weyer, M.: Bounded fixed-parameter tractability: the case of 2poly(k). In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 49–60. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kevin Burrage
    • 1
  • Vladimir Estivill-Castro
    • 2
  • Michael Fellows
    • 3
  • Michael Langston
    • 4
    • 5
  • Shev Mac
    • 1
  • Frances Rosamond
    • 6
  1. 1.Department of MathematicsUniversity of QueenslandBrisbane
  2. 2.Griffith UniversityBrisbaneAustralia
  3. 3.School of EE & CSUniversity of NewcastleCallaghanAustralia
  4. 4.Department of Computer ScienceUniversity of TennesseeKnoxvilleUSA
  5. 5.Computer Science and Mathematics DivisionOak Ridge National LaboratoryOak RidgeUSA
  6. 6.The Retreat for the Arts and SciencesNewcastleAustralia

Personalised recommendations