Visualization of Prosodic Knowledge Using Corpus Driven MEMOInt Intonation Modelling

  • David Escudero-Mancebo
  • Valentín Cardeñoso-Payo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4188)


In this work we show how our intonation corpus driven intonation modelling methodology MEMOInt can help in the graphical visualization of the complex relationships between the different prosodic features which configure the intonational aspects of natural speech. MEMOInt has already been used successfully for the prediction of synthetic F0 contours in the presence of the usual data scarcity problems. Now, we report on the possibilities of using the information gathered in the modelling phase in order to provide a graphical view of the relevance of the various prosodic features which affect the typical F0 movements. The set of classes which group the intonation patterns found in the corpus can be structured in a tree in which the relation between the classes and the prosodic features of the input text is hierarchically correlated. This visual outcome shows to be very useful to carry out comparative linguistic studies of prosodic phenomena and to check the correspondence between previous prosodic knowledge on a language and the real utterances found in a given corpus.


Stress Group Prosodic Feature Stressed Syllable Declarative Sentence Agglomerative Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaron, A., Pitrelli, E., Pitrelli, J.F.: Conversational computers. Scientific American, 64–70 (June 2005)Google Scholar
  2. 2.
    Aguado, P.D., Wimmer, K., Bonafonte, A.: Joint extraction and prediction of fujisaki’s intonation model parameters. In: Proceedings of EuroSpeech 2005 (2005)Google Scholar
  3. 3.
    Allen, J., Hunnicutt, M.S., Klatt, D.: From Text to Speech: The MITalk System. Cambridge University Press, Cambridge (1987)Google Scholar
  4. 4.
    Botinis, A., Granstrom, B., Moebius, B.: Developments and Paradigms in Intonation Research. Speech Communications 33, 263–296 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Cardeñoso, V., Escudero, D.: A strategy to solve data scarcity problems in corpus based intonation modelling. In: Proceedings of ICASSP 2004 (2004)Google Scholar
  6. 6.
    Escudero, D.: Modelado Estadístico de Entonación con Funciones de Bézier: Aplicaciones a la Conversión Texto Voz. Ph.D. thesis, Dpto. de Informática, Universidad de Valladolid, España (2002)Google Scholar
  7. 7.
    Escudero, D., Cardeñoso, V., Bonafonte, A.: Corpus based extraction of quantitative prosodic parameters of stress groups in spanish. In: Proceedings of ICASSP 2002, Mayo (2002)Google Scholar
  8. 8.
    Escudero, D., Cardeñoso, V.: Optimized selection of intonation dictionaries in corpus based intonation modelling. In: Proceedings of Eurospeech (September 2005)Google Scholar
  9. 9.
    Fujisaki, H., Hirose, K.: Analysis of voice fundamental frequency contours for declarative sentences of Japanese. Journal of Acoustics Society of Japan 5(4), 233–242 (1984)Google Scholar
  10. 10.
    Hermes, D.J.: Measuring the perceptual similarity of pitch contours. Journal of Speech, Language, and Hearing Research 41, 73–82 (1994)Google Scholar
  11. 11.
    Joskisch, O., Mixdorff, H., Kruschke, H., Kordon, U.: Learning the parameters of quantitative prosody models. In: Proceedings of ICSLP 2000 (2000)Google Scholar
  12. 12.
    Navarro-Tomás, T.: Manual de Entonación Española. Madrid, Guadarrama (1944)Google Scholar
  13. 13.
    Sosa, J.M.: La Entonación del Español. Cátedra (1999)Google Scholar
  14. 14.
    Sproat, R.: Multilingual Text-to-Speech Synthesis. Kluwer, Dordrecht (1998)Google Scholar
  15. 15.
    Taylor, P.: Analysis and Synthesis of Intonation using the Tilt Model. Journal of Acoustical Society of America 107(3), 1697–1714 (2000)CrossRefGoogle Scholar
  16. 16.
    Webb, A.: Statistical Pattern Recognition, 2nd edn. Wiley, Chichester (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Escudero-Mancebo
    • 1
  • Valentín Cardeñoso-Payo
    • 1
  1. 1.University of ValladolidValladolidSpain

Personalised recommendations