A Study of the Influence of PoS Tagging on WSD

  • Lorenza Moreno-Monteagudo
  • Rubén Izquierdo-Beviá
  • Patricio Martínez-Barco
  • Armando Suárez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4188)


In this paper we discuss to what extent the choice of one particular Part-of-Speech (PoS) tagger determines the results obtained by a word sense disambiguation (WSD) system. We have chosen several PoS taggers and two WSD methods. By combining them, and using different kind of information, several experiments have been carried out. The WSD systems have been evaluated using the corpora of the lexical sample task of senseval-3 for English. The results show that some PoS taggers work better with one specific method. That is, selecting the right combination of these tools, could improve the results obtained by a WSD system.


Support Vector Machine Maximum Entropy Ambiguity Resolution Wall Street Journal Word Sense Disambiguation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lau, R., Rosenfeld, R., Roukos, S.: Adaptative statistical language modeling using the maximum entropy principle. In: Proceedings of the Human Language Technology Workshop, ARPA (1993)Google Scholar
  2. 2.
    Berger, A.L., Della Pietra, S.A., Della Pietra, V.J.: A maximum entropy approach to natural language processing. Computational Linguistics 22, 39–71 (1996)Google Scholar
  3. 3.
    Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity Resolution. Ph.D. thesis, University of Pennsylvania, Philadelphia (1998)Google Scholar
  4. 4.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)MATHGoogle Scholar
  5. 5.
    Gaustad, T.: The importance of high quality input for wsd: an application-oriented comparison of part-of-speech taggers. In: Proceedings of the ALTW 2003, Melbourne, Australia, pp. 65–72 (2003)Google Scholar
  6. 6.
    Mihalcea, R., Chklovski, T., Kilgarriff, A.: The Senseval-3 English lexical sample task. In: Mihalcea, R., Edmonds, P. (eds.) Senseval-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, Association for Computational Linguistics, pp. 25–28 (2004)Google Scholar
  7. 7.
    Giménez, J., Márquez, L.: SVMtool: A general pos tagger generator based on support vector machines. In: Proceedings of LREC 2004, Fourth International Conference on Language Resources and Evaluation, Workshop, Lisbon, Portugal (2004)Google Scholar
  8. 8.
    Carreras, X., Chao, I., Padró, L., Padró, M.: Freeling: An open-source suite of language analyzers. In: Proceedings of LREC 2004, Lisbon, Portugal (2004)Google Scholar
  9. 9.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of NemLap 1994, Manchester, England, pp. 44–49 (1994)Google Scholar
  10. 10.
    Brill, E.: A simple rule-based part of speech tagging. In: Proceedings of the 3rd Annual Meeting of the ACL, Trento, Italy (1992)Google Scholar
  11. 11.
    Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: Brill, E., Church, K. (eds.) Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Somerset, New Jersey, pp. 133–142 (1996)Google Scholar
  12. 12.
    Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  13. 13.
    Suárez, A., Palomar, M.: A maximum entropy-based word sense disambiguation system. In: Chen, H.H., Lin, C.Y. (eds.) Proceedings of the 19th International COLING, pp. 960–966 (2002)Google Scholar
  14. 14.
    Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1923 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lorenza Moreno-Monteagudo
    • 1
  • Rubén Izquierdo-Beviá
    • 1
  • Patricio Martínez-Barco
    • 1
  • Armando Suárez
    • 1
  1. 1.Departamento de Lenguajes y Sistemas Informáticos.Spain

Personalised recommendations