Advertisement

Sovereign Information Sharing Among Malicious Partners

  • Stefan Böttcher
  • Sebastian Obermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4165)

Abstract

A secure calculation of common data RS without disclosing R or S is useful for many applications and has been widely studied. However, proposed solutions assume all participants act “semi-honest”, which means participants may neither stop the protocol execution nor fake database content. In this contribution, we focus on a malicious participant behavior and prove that an atomic exchange of common data is not possible under the assumption of malicious participants. However, we propose mechanisms that not only reduce the damage in case a participant alters the exchange protocol, but also give a means to impede database content faking.

Keywords

Atomic Exchange Common Data Exchange Protocol Oblivious Transfer Information Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC 1999: Proceedings of the thirty-first annual ACM symposium on Theory of computing, pp. 245–254. ACM Press, New York (1999)CrossRefGoogle Scholar
  2. 2.
    Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: ACM Conference on Electronic Commerce, pp. 78–86 (1999)Google Scholar
  3. 3.
    Agrawal, R., Terzi, E.: On honesty in sovereign information sharing. In: 10th International Conference on Extending Database Technology, Munich, Germany, pp. 240–256 (2006)Google Scholar
  4. 4.
    Agrawal, R., Evfimievski, A.V., Srikant, R.: Information sharing across private databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, California, USA, pp. 86–97 (2003)Google Scholar
  5. 5.
    Akkoyunlu, E.A., Ekanadham, K., Huber, R.V.: Some constraints and tradeoffs in the design of network communications. SIGOPS Oper. Syst. Rev. 9, 67–74 (1975)CrossRefGoogle Scholar
  6. 6.
    Gray, J.: Notes on data base operating systems. In: Flynn, M.J., Jones, A.K., Opderbeck, H., Randell, B., Wiehle, H.R., Gray, J.N., Lagally, K., Popek, G.J., Saltzer, J.H. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer, Heidelberg (1978)Google Scholar
  7. 7.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22, 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  9. 9.
    Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: STOC 1982: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp. 365–377. ACM Press, New York (1982)CrossRefGoogle Scholar
  10. 10.
    Shamir, A., Rivest, R., Adleman, L.: Mental poker. Technical Report LCS/TR-125 (1979)Google Scholar
  11. 11.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 21st Annual IEEE Symposium on the Foundations of Computer Science, Chicago, pp. 160–164. IEEE, Los Alamitos (1982)Google Scholar
  12. 12.
    Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: A review and open problems. In: New Security Paradigms Workshop, Cloudcroft, New, Mexico, USA, pp. 11–20 (2001)Google Scholar
  13. 13.
    Clifton, C., Kantarcioglu, M., Lin, X., Vaidya, J., Zhu, M.: Tools for privacy preserving distributed data mining (2003)Google Scholar
  14. 14.
    Goldreich, O.: Secure multi-party computation. Working Draft (2000)Google Scholar
  15. 15.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC 1987: Proceedings of the nineteenth annual ACM conference on Theory of computing, pp. 218–229. ACM Press, New York (1987)CrossRefGoogle Scholar
  16. 16.
    Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Ajmani, S., Morris, R., Liskov, B.: A trusted third-party computation service. Technical Report MIT-LCS-TR-847. MIT (2001)Google Scholar
  19. 19.
    Jefferies, N., Mitchell, C.J., Walker, M.: A proposed architecture for trusted third party services. In: Cryptography: Policy and Algorithms, pp. 98–104 (1995)Google Scholar
  20. 20.
    Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: CCS 1997: Proceedings of the 4th ACM conference on Computer and communications security, pp. 7–17. ACM Press, New York (1997)CrossRefGoogle Scholar
  21. 21.
    Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair exchange. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 86–99 (1998)Google Scholar
  22. 22.
    Franklin, M.K., Reiter, M.K.: Fair exchange with a semi-trusted third party (extended abstract). In: ACM Conference on Computer and Communications Security, pp. 1–5 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Böttcher
    • 1
  • Sebastian Obermeier
    • 1
  1. 1.University of PaderbornPaderbornGermany

Personalised recommendations