Life History Evolution of Virtual Plants: Trading Off Between Growth and Reproduction

  • Stefan Bornhofen
  • Claude Lattaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


This paper presents studies on the life history evolution of plants carried out by experimenting with a multi-agent platform of generic virtual plants. The conducted simulations address the trade-off between resource allocation to vegetative and reproductive structures. The trade-off is pointed out by evolutionary runs selecting for one of the two traits. It is further shown that the introduction of an age at maturity is an effective measure to enhance both life history traits. A third series of experiments highlights that competition in plant communities has an impact on the trade-off. Depending on the competitive pressure, plants evolve more investment of resources into growth than into reproduction. The results corroborate some hypotheses of life history theory.


Life History Life History Trait Production Rule Competitive Pressure Reproductive Module 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Begon, M., Harper, J.L., Townsend, C.R.: Ecology: Individuals, Populations and Communities, 2nd edn. Blackwell Scientific Publications, Cambridge (1990)Google Scholar
  2. 2.
    Cody, M.L.: A general theory of clutch size. Evolution 20, 174–184 (1966)CrossRefGoogle Scholar
  3. 3.
    Dana, M.N., Lerner, B.R.: A guide to flowering and why plants fail to bloom. Purdue University Cooperative Extension Service Publication HO-173-W (2002)Google Scholar
  4. 4.
    Fenner, M., Thompson, K.: The ecology of seeds. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  5. 5.
    Ferber, J.: Les systèmes multi-agents. InterEdition, Paris (1995)Google Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Massachusetts (1989)MATHGoogle Scholar
  7. 7.
    Harper, J.L.: A Darwinian approach to plant ecology. Journal of Ecology 55, 247–270 (1967)CrossRefGoogle Scholar
  8. 8.
    Hirshfield, M.F., Tinkle, D.W.: Natural selection and the evolution of reproductive effort. Proc. of the National Academy of Sciences USA,  72, 2227–2231 (1975)Google Scholar
  9. 9.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  10. 10.
    Kurth, W.: Morphological models of plant growth: Possibilities and ecological relevance. Ecological Modelling 75, 299–308 (1994)CrossRefGoogle Scholar
  11. 11.
    Landsberg, J.J., Gower, S.T.: Applications of Physiological Ecology to Forest Management. Academic Press, London (1997)Google Scholar
  12. 12.
    Le Roux, X., Lacointe, A., Escobar-Gutiérrez, A., Le Dizès, S.: Carbon-based models of individual tree growth: A critical appraisal. Ann. For. Sci. 58, 469–506 (2001)CrossRefGoogle Scholar
  13. 13.
    Lewontin, R.C.: Selection for colonizing ability. In: Baker, H.G., Stebins, G.L. (eds.) The Genetics of Colonizing Species, pp. 79–94. Academic Press, London (1965)Google Scholar
  14. 14.
    Niklas, K.J.: Computer-simulated plant evolution. Scien. Am. 254, 78–86 (1986)CrossRefGoogle Scholar
  15. 15.
    OGRE Internet home page (last accessed in April 2006),
  16. 16.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Berlin (1990)MATHGoogle Scholar
  17. 17.
    Roff, D.A.: The Evolution of Life Histories: Theory and Analysis. Chapman and Hall, New York (1992)Google Scholar
  18. 18.
    Room, P., Hanan, J., Prusinkiewicz, P.: Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science 1, 33–38 (1996)CrossRefGoogle Scholar
  19. 19.
    Samson, D.A., Werk, K.S.: Size-dependent effects in the analysis of reproductive effort in plants. The American Naturalist 127, 667–680 (1986)CrossRefGoogle Scholar
  20. 20.
    Stearns, S.C.: The Evolution of Life Histories. Oxford Univ. Press, UK (1992)Google Scholar
  21. 21.
    Stearns, S.C.: Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000)CrossRefGoogle Scholar
  22. 22.
    Thornley, J.H.M.: A balanced quantitative model for root:shoot ratios in vegetative plants. Annals of Botany 36, 431–441 (1972)Google Scholar
  23. 23.
    Thornley, J.H.M.: Modelling shoot:root relations: the only way forward? Annals of Botany 81, 165–171 (1998)CrossRefGoogle Scholar
  24. 24.
    Ulam, S.: On some mathematical properties connected with patterns of growth of figures. In: Proc. of Symposia on Appl. Math., Am. Math. Soc., vol. 14, pp. 215–224 (1962)Google Scholar
  25. 25.
    Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J.: Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33, 125–159 (2002)CrossRefGoogle Scholar
  26. 26.
    Williams, G.C.: Natural selection, the cost of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Bornhofen
    • 1
  • Claude Lattaud
    • 1
  1. 1.Laboratoire d’Intelligence Artificielle de Paris 5, LIAP5 – CRIP5Université de Paris 5ParisFrance

Personalised recommendations