Advertisement

Some Steps Towards Understanding How Neutrality Affects Evolutionary Search

  • Edgar Galván-López
  • Riccardo Poli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)

Abstract

The effects of neutrality on evolutionary search have been considered in a number of interesting studies, the results of which, however, have been contradictory. We believe that this confusion is due to several reasons. In this paper, we shed some light on neutrality by addressing these problems. That is, we use the simplest possible definition of neutrality, we consider one of the simplest possible algorithms, we apply it to two problems (a unimodal landscape and a deceptive landscape), which we analyse using fitness distance correlation, performance statistics and, critically, tracking the full evolutionary path of individuals within their family tree.

Keywords

Search Space Global Optimum Distance Correlation Family Tree Neutral Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenberg, L.: Fitness distance correlation analysis: An instructive counterexample. In: Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 57–64. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  2. 2.
    Banzhaf, W.: Genotype-phenotype-mapping and neutral variation – A case study in genetic programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Barnett, L.: Ruggedness and neutrality: The nkp family of fitness landscapes. In: Aami, R., et al. (eds.) Artificial Live VI: Proceedings of the Sixth International Conference on Artificial Life, pp. 18–27. MIT Press, Cambridge (1998)Google Scholar
  4. 4.
    Clergue, M., Collard, P., Tomassini, M., Vanneschi, L.: Fitness distance correlation and problem difficulty for genetic programming. In: Langdon, W.B., et al. (eds.) GECCO 2002. Proceedings of the Genetic and Evolutionary Computation Conference, July 9-13, 2002, pp. 724–732. Morgan Kaufmann Publishers, New York (2002)Google Scholar
  5. 5.
    Collins, M.: Finding needles in haystacks is harder with neutrality. In: Beyer, H.-G., et al. (eds.) GECCO 2005. Proceedings of the 2005 conference on Genetic and evolutionary computation, Washington, June 25-29, 2005, vol. 2, pp. 1613–1618. ACM Press, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Goldberg, D.E.: Construction of high-order deceptive functions using low-order walsh coefficients. Ann. Math. Artif. Intell. 5(1), 35–47 (1992)MATHCrossRefGoogle Scholar
  7. 7.
    Harvey, I., Thompson, A.: Through the labyrinth evolution finds a way: A silicon ridge. In: Higuchi, T., Iwata, M., Weixin, L. (eds.) ICES 1996. LNCS, vol. 1259, pp. 406–422. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Igel, C., Toussaint, M.: Neutrality and self-adaptation. Natural Computing, 117–132 (2003)Google Scholar
  9. 9.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on GA, pp. 184–192. Morgan Kaufmann Publishers Inc., San Francisco (1995)Google Scholar
  10. 10.
    Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)CrossRefGoogle Scholar
  11. 11.
    Quick, R.J., Rayward-Smith, V.J., Smith, G.D.: Fitness distance correlation and ridge functions. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 77–86. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Shipman, R., Schackleton, M., Harvey, I.: The use of neutral genotype-phenotype mappings for improved evolutionary search. BT. Technology Journal 18(4), 103–111 (2000)CrossRefGoogle Scholar
  13. 13.
    Shipman, R., Schakleton, M., Ebner, M., Watson, R.: Neutral search spaces for artificial evolution: A lesson from life. In: Bedau, M., et al. (eds.) Artificial Life: Proceedings of the Seventh International Conference on Artificial Evolution, pp. 162–169. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Smith, T., Husbands, P., O’Shea, M.: Neutral networks and evolvability with complex genotype-phenotype mapping. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 272–282. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Smith, T., Husbands, P., O’Shea, M.: Neutral networks in an evolutionary robotics search space. In: Congress on Evolutionary Computation: CEC 2001, pp. 136–145. IEEE Press, Los Alamitos (2001)Google Scholar
  16. 16.
    Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation 13(2), 213–239 (2005)CrossRefGoogle Scholar
  17. 17.
    Vanneschi, L., Tomassini, M., Collard, P., Clergue, M.: Fitness distance correlation in structural mutation genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 455–464. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Yu, T., Miller, J.: Neutrality and the evolvability of boolean function landscape. In: Fourth European Conference on GP, pp. 204–211. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Yu, T., Miller, J.F.: Needles in haystacks are not hard to find with neutrality. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 13–25. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Yu, T., Miller, J.F.: The role of neutral and adaptive mutation in an evolutionary search on the onemax problem. In: Cantú-Paz, E. (ed.) Late Breaking Papers at the Genetic and Evolutionary Computation Conference (GECCO 2002), New York, July 2002, pp. 512–519. AAAI, Menlo Park (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Edgar Galván-López
    • 1
  • Riccardo Poli
    • 1
  1. 1.University of EssexColchesterUK

Personalised recommendations