A Distance-Based Information Preservation Tree Crossover for the Maximum Parsimony Problem

  • Adrien Goëffon
  • Jean-Michel Richer
  • Jin-Kao Hao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the number of evolutionary changes. Known to be NP-complete, the MP problem has many applications. This paper introduces a Distance-based Information Preservation (DiBIP) Tree Crossover. Contrary to previous crossover operators, DiBIP uses a distance measure to characterize the semantic information of a phylogenetic tree and ensures the preservation of distance related properties between parents and offspring. The performance of DiBIP is assessed with a mimetic algorithm on a set of 28 benchmark instances from the literature. Comparisons with 3 state-of-the-art algorithms show very competitive results of the proposed approach with improvement of some previously best results found.


Local Search Distance Matrix Crossover Operator Local Search Algorithm Benchmark Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bininda-Emonds, O.R.P. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Springer, Heidelberg (2004)MATHGoogle Scholar
  2. 2.
    Congdon, C.B.: Gaphyl: An Evolutionary Algorithms Approach For The Study Of Natural Evolution. In: Proceedings of the 6th Joint Conference on Information Science (2002)Google Scholar
  3. 3.
    Congdon, C.B., Septor, K.J.: Phylogenetic trees using evolutionary search: Initial progress in extending gaphyl to work with genetic data. In: Proc. of the 2003 Congress on Evolutionary Computation, pp. 320–326. IEEE press, Los Alamitos (2003)CrossRefGoogle Scholar
  4. 4.
    Cotta, C., Moscato, P.: Inferring Phylogenetic Trees Using Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 720–729. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2003)Google Scholar
  6. 6.
    Fitch, W.: Towards defining course of evolution: minimum change for a specified tree topology. Systematic Zoology 20, 406–416 (1971)CrossRefGoogle Scholar
  7. 7.
    Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3, 43–49 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goëffon, A., Richer, J.-M., Hao, J.-K.: Local search for the maximum parsimony problem. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 678–683. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Goëffon, A., Richer, J.-M., Hao, J.-K.: Progressive Tree Neighborhood applied to the Maximum Parsimony Problem. IEEE Transactions on Computational Biology and Bioinformatics (submitted, 2006)Google Scholar
  10. 10.
    Goloboff, P.A., Farris, J.S., Nixon, K.: TNT: Tree Analysis Using New Technology (2003)Google Scholar
  11. 11.
    Hillis, D., Moritz, C., Mable, B.: Molecular Systematics. Sinauer, Boston (1996)Google Scholar
  12. 12.
    Lewis, P.O.: A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide sequence data. Molecular Biolology and Evolution 15(3), 277–283 (1998)Google Scholar
  13. 13.
    Matsuda, H.: Protein Phylogenetic Inference Using Maximum Likelihood With A Genetic Algorithm. In: Prof. of Pacific Symposium on Biocomputing, pp. 512–536 (1996)Google Scholar
  14. 14.
    Moilanen, A.: Searching for Most Parsimonious Trees with Simulated Evolutionary Optimization. Cladistics 15(1), 39–50 (1998)CrossRefGoogle Scholar
  15. 15.
    Ribeiro, C.C., Vianna, D.S.: A genetic algorithm for the phylogeny problem using an optimized crossover strategy based on path-relinking. In: Proc. of 2nd Bresil Workshop on Bioinformatics, pp. 97–102 (2003)Google Scholar
  16. 16.
    Ribeiro, C.C., Vianna, D.S.: A GRASP/VND heuristic for the phylogeny problem using a new neighborhood structure. International Transactions in Operational Research 12, 1–14 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Sneath, P.H.A., Sokal, R.R.: Numerical taxonomy. W.H. Freeman and Co., San Francisco, California (1973)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adrien Goëffon
    • 1
  • Jean-Michel Richer
    • 1
  • Jin-Kao Hao
    • 1
  1. 1.LERIAUniversity of AngersAngersFrance

Personalised recommendations