A Generalized Graph-Based Method for Engineering Swarm Solutions to Multiagent Problems

  • R. Paul Wiegand
  • Mitchell A. Potter
  • Donald A. Sofge
  • William M. Spears
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


We present two key components of a principled method for constructing modular, heterogeneous swarms. First, we generalize a well-known technique for representing swarm behaviors to extend the power of multiagent systems by specializing agents and their interactions. Second, a novel graph-based method is introduced for designing swarm-based behaviors for multiagent teams. This method includes engineer-provided knowledge through explicit design decisions pertaining to specialization, heterogeneity, and modularity. We show the representational power of our generalized representation can be used to evolve a solution to a challenging multiagent resource protection problem. We also construct a modular design by hand, resulting in a scalable and intuitive heterogeneous solution for the resource protection problem.


Multiagent System Particle Type Protector Type Incorporate Domain Knowledge Collective Robotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University Press, Oxford (1999)MATHGoogle Scholar
  2. 2.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  3. 3.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  4. 4.
    Kube, C.R., Zhang, H.: Collective Robotics: From Social Insects to Robots. Adaptive Behavior 2, 189–218 (1994)CrossRefGoogle Scholar
  5. 5.
    Spears, W., Gordon, D.: Using Artificial Physics to control agents. In: IEEE International Conference on Information, Intelligence, and Systems, pp. 281–288. IEEE, Los Alamitos (1999)Google Scholar
  6. 6.
    Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control of swarms of vehicles. Autonomous Robots 17, 137–162 (2004)CrossRefGoogle Scholar
  7. 7.
    Howard, A., Mataric, M., Sukhatme, G.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In: Sixth International Symposium on Distributed Autonomous Robotics Systems (2002)Google Scholar
  8. 8.
    Spears, W., Spears, D., Heil, R.: A formal analysis of potential energy in a multiagent systems. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 131–145. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Hettiarachchi, S., Spears, W., Kerr, W., Zarzhitsky, D., Green, D.: Distributed agent evolution with dynamic adaptation to local unexpected scenarios. In: Second GSFC/IEEE Workshop on Radical Agent Concepts, Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Hettiarachchi, S., Spears, W.: Moving swarm formations through obstacle fields. In: International Conference on Artificial Intelligence, vol. 1, pp. 97–103. CSREA Press (2005)Google Scholar
  11. 11.
    Luke, S., Balan, G.C., Panait, L., Cioffi-Revilla, C., Paus, S.: Mason: A java multi-agent simulation library. In: Agent 2003 Conference on Challenges in Social Simulation (2003)Google Scholar
  12. 12.
    Winfield, A., Harper, C., Nembrini, J.: Towards dependable swarms and a new discipline of swarm engineering. In: 2004 SAB Swarm Robotics Workshop, pp. 133–148 (2004)Google Scholar
  13. 13.
    Kazadi, S.: On the Development of a Swarm Engineering Methodology. In: IEEE Conference on Systems, Man, and Cybernetics, pp. 1423–1428. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  14. 14.
    Chang, K., Hwang, J., Lee, E., Kazadi, S.: The Application of Swarm Engineering Technique to Robust Multi-chain Robot System. In: IEEE Conference on Systems, Man, and Cybernetics, pp. 1429–1434. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  15. 15.
    Reif, J.H., Wang, H.: Social Potential Fields: A Distributed Behavioral Control for Autonomous Robots. Robotics and Autonomous Systems 27(3), 171–194 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Paul Wiegand
    • 1
  • Mitchell A. Potter
    • 1
  • Donald A. Sofge
    • 1
  • William M. Spears
    • 2
  1. 1.U.S. Naval Research Lab 
  2. 2.University of Wyoming 

Personalised recommendations