A Two-Level Clustering Method Using Linear Linkage Encoding

  • Emin Erkan Korkmaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


Linear Linkage Encoding (LLE) is a representational scheme proposed for Genetic Algorithms (GA). LLE is convenient to be used for grouping problems and it doesn’t suffer from the redundancy problem that exists in classical encoding schemes. Any number of groups can be represented in a fixed length chromosome in this scheme. However, the length of the chromosome in LLE is determined by the number of elements to be grouped just like the other encoding schemes. This disadvantage becomes dominant when LLE is applied on large datasets and the encoding turns out to be an infeasible model. In this paper a two-level approach is proposed for LLE in order to overcome the problem. In this method, the large dataset is divided into a group of subsets. In the first phase of the process, the data in the subsets are grouped using LLE. Then these groups are used to obtain the final partitioning of the data in the second phase. The approach is tested on the clustering problem. Two considerably large datasets have been chosen for the experiments. It is not possible to obtain a satisfactory convergence with the straightforward application of LLE on these datasets. The method proposed can cluster the datasets with low error rates.


Genetic Algorithm Pareto Front Encode Scheme Cluster Problem Optimal Partitioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley & Sons, Chichester (1998)Google Scholar
  2. 2.
    Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that employs genetic algorithm with new representation scheme and multiple objectives. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 219–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Alternative clustering by utilizing multi-objective genetic algorithm with linked-list based chromosome encoding. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, p. 346. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Jones, D.A., Beltramo, M.A.: Solving partitioning problems with genetic algorithms. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, San Diego, CA, pp. 442–449. Morgan Kaufmann, San Francisco (1991)Google Scholar
  5. 5.
    Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. university of california, irvine, dept. of information and computer sciences (2000),
  6. 6.
    Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23, 1–18 (1990)Google Scholar
  7. 7.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall International (1988)Google Scholar
  8. 8.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. John Wiley & Sons, Chichester (1990)CrossRefGoogle Scholar
  9. 9.
    Cole, R.M.: Clustering with genetic algorithms. Master’s thesis, Nedlands 6907, Australia (1998)Google Scholar
  10. 10.
    Bezdek, J., Boggavarapu, S.: Genetic algorithm guided clustering. In: Proc. 1st IEEE Conf. on Evolutionary Computation, pp. 34–39 (1994)Google Scholar
  11. 11.
    Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recognition 33, 1455–1465 (2000)CrossRefGoogle Scholar
  12. 12.
    Ng, R., Han, J.: Efficient and effective clustering method for spatial data mining. In: Proc. of 1994 Int’l Conf. on Very Large Data Bases (VLDB 1994), pp. 144–155 (1994)Google Scholar
  13. 13.
    Dhillon, I., Fan, J., Guan, Y.: Efficient clustering of very large document collections. In: Grossman, R., Kamath, C., Naburu, R. (eds.) Data Mining for Scientific and Engineering Applications, Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  14. 14.
    Radcliffe, N.J.: Forma analysis and random respectful recombination. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, San Diego, CA, pp. 222–229. Morgan Kaufmann, San Francisco (1991)Google Scholar
  15. 15.
    Krishna, K., Murty, M.: Genetic k-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics - PartB: Cybernetics 29(3), 433–439 (1999)CrossRefGoogle Scholar
  16. 16.
    Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, New Jersey, vol. 1, pp. 82–87 (1994)Google Scholar
  17. 17.
    Torrez, F.: Machine learning datasets, universite charles de gaulle,groupe de recherche sur l’apprentissage automatique, cedex, franceGoogle Scholar
  18. 18.
    Fred, A.L.N.: Clustering based on dissimilarity first derivatives. In: 2nd International Workshop on Pattern Recognition in Information Systems, PRIS, pp. 257–266 (2002)Google Scholar
  19. 19.
    Ruspini, E.: Numerical methods for fuzzy clustering. Inform. Sci. 2(3), 19–150 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emin Erkan Korkmaz
    • 1
  1. 1.Computer Engineering DepartmentYeditepe UniversityİstanbulTurkey

Personalised recommendations