Advertisement

Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization

  • Dimo Brockhoff
  • Eckart Zitzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)

Abstract

Most of the available multiobjective evolutionary algorithms (MOEA) for approximating the Pareto set have been designed for and tested on low dimensional problems (≤3 objectives). However, it is known that problems with a high number of objectives cause additional difficulties in terms of the quality of the Pareto set approximation and running time. Furthermore, the decision making process becomes the harder the more objectives are involved. In this context, the question arises whether all objectives are necessary to preserve the problem characteristics. One may also ask under which conditions such an objective reduction is feasible, and how a minimum set of objectives can be computed. In this paper, we propose a general mathematical framework, suited to answer these three questions, and corresponding algorithms, exact and heuristic ones. The heuristic variants are geared towards direct integration into the evolutionary search process. Moreover, extensive experiments for four well-known test problems show that substantial dimensionality reductions are possible on the basis of the proposed methodology.

Keywords

Dimensionality Reduction Greedy Algorithm Multiobjective Optimization Exact Algorithm Multiobjective Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)MATHGoogle Scholar
  2. 2.
    Paechter, B., Rankin, R.C., Cumming, A., Fogarty, T.C.: Timetabling the classes of an entire university with an evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 865–874. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Coello Coello, C.A., Hernández Aguirre, A.: Design of Combinational Logic Circuits through an Evolutionary Multiobjective Optimization Approach. Artificial Intelligence for Engineering, Design, Analysis and Manufacture 16(1), 39–53 (2002)Google Scholar
  4. 4.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., Jain, R., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Emmerich, M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation 7(2), 100–116 (2003)CrossRefGoogle Scholar
  7. 7.
    While, L.: A new analysis of the lebmeasure algorithm for calculating hypervolume. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 326–340. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)MATHGoogle Scholar
  9. 9.
    Purshouse, R.C., Fleming, P.J.: Conflict, harmony, and independence: Relationships in evolutionary multi-criterion optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications. Springer, London (2005)MATHGoogle Scholar
  11. 11.
    Deb, K., Saxena, D.K.: On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Kangal report no. 2005011, Kanpur Genetic Algorithms Laboratory (KanGAL) (2005)Google Scholar
  12. 12.
    Brockhoff, D., Zitzler, E.: On Objective Conflicts and Objective Reduction in Multiple Criteria Optimization. TIK Report 243, ETH Zurich, Zurich, Switzerland (2006); Operations Research 2006 (submitted)Google Scholar
  13. 13.
    Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar
  14. 14.
    Brockhoff, D., Zitzler, E.: Dimensionality Reduction in Multiobjective Optimization with (Partial) Dominance Structure Preservation: Generalized Minimum Objective Subset Problems. TIK Report 247, ETH Zurich, Zurich, Switzerland (2006)Google Scholar
  15. 15.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dimo Brockhoff
    • 1
  • Eckart Zitzler
    • 1
  1. 1.Computer Engineering and Networks LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations