About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization

  • Jürgen Branke
  • Sanaz Mostaghim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


In particle swarm optimization, a particle’s movement is usually guided by two solutions: the swarm’s global best and the particle’s personal best. Selecting these guides in the case of multiple objectives is not straightforward. In this paper, we investigate the influence of the personal best particles in Multi-Objective Particle Swarm Optimization. We show that selecting a proper personal guide has a significant impact on algorithm performance. We propose a new idea of allowing each particle to memorize all non-dominated personal best particles it has encountered. This means that if the updated personal best position be indifferent to the old one, we keep both in the personal archive. Also we propose several strategies to select a personal best particle from the personal archive. These methods are empirically compared on some standard test problems.


Multiobjective Optimization Objective Space Local Guide Global Good Particle Personal Good Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm based exclusively on pareto dominance concepts. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 459–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Clerc, M., Kennedy, J.: The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  3. 3.
    Coello Coello, C.A., Lechuga, M.S.: Mopso: A proposal for multiple objective particle swarm optimization. In: Congress on Evolutionary Computation, pp. 1051–1056. IEEE, Los Alamitos (2002)Google Scholar
  4. 4.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation, pp. 825–830. IEEE, Los Alamitos (2002)Google Scholar
  5. 5.
    Eberhardt, R.C., Shi, Y. (eds.): Special issue on particle swarm optimization. IEEE Transactions on Evolutionary Computation, vol. 8(3) (2004)Google Scholar
  6. 6.
    Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  7. 7.
    Janson, S., Merkle, D.: A new multi-objective particle swarm optimization algorithm using clustering applied to automated docking. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 128–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation 8(3), 204–210 (2004)CrossRefGoogle Scholar
  10. 10.
    Mostaghim, S.: Multi-objective Evolutionary Algorithms: Data structures, Diversity and Convergence. Shaker (2005)Google Scholar
  11. 11.
    Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective particle swarm optimization. In: Swarm Intelligence Symposium, pp. 26–33. IEEE, Los Alamitos (2003)Google Scholar
  12. 12.
    Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On test functions for evolutionary multi-objective optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 792–802. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1(2-3), 235–306 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reyes-Sierra, M., Coello Coello, C.: Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research (2006)Google Scholar
  15. 15.
    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Shaker (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jürgen Branke
    • 1
  • Sanaz Mostaghim
    • 1
  1. 1.Institute AIFBUniversity of KarlsruheGermany

Personalised recommendations