A New Proposal for Multiobjective Optimization Using Particle Swarm Optimization and Rough Sets Theory

  • Luis V. Santana-Quintero
  • Noel Ramírez-Santiago
  • Carlos A. Coello Coello
  • Julián Molina Luque
  • Alfredo García Hernández-Díaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


This paper presents a new multi-objective evolutionary algorithm which consists of a hybrid between a particle swarm optimization approach and some concepts from rough sets theory. The main idea of the approach is to combine the high convergence rate of the particle swarm optimization algorithm with a local search approach based on rough sets that is able to spread the nondominated solutions found, so that a good distribution along the Pareto front is achieved. Our proposed approach is able to converge in several test functions of 10 to 30 decision variables with only 4,000 fitness function evaluations. This is a very low number of evaluations if compared with today’s standards in the specialized literature. Our proposed approach was validated using nine standard test functions commonly adopted in the specialized literature. Our results were compared with respect to a multi-objective evolutionary algorithm that is representative of the state-of-the-art in the area: the NSGA-II.


Particle Swarm Optimization Pareto Front Multiobjective Optimization Nondominated Solution Multiobjective Evolutionary Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, California (2001)Google Scholar
  2. 2.
    Coello Coello, C.A., Toscano Pulido, G., Salazar Lechuga, M.: Handling Multiple Objectives With Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation 8(3), 256–279 (2004)CrossRefGoogle Scholar
  3. 3.
    Mostaghim, S., Teich, J.: Strategies for Finding Good Local Guides in Multi-objective Particle Swarm Optimization (MOPSO). In: IEEE Swarm Intelligence Symposium Proc., Indianapolis, Indiana, USA, pp. 26–33. IEEE Service Center (2003)Google Scholar
  4. 4.
    Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)MathSciNetGoogle Scholar
  5. 5.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(1), 341–356 (1982)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)CrossRefGoogle Scholar
  7. 7.
    Hernández-Díaz, A.G., Santana-Quintero, L.V., Coello, C.A.C., Molina, J.: Pareto-adaptive ε-dominance. Technical Report EVOCINV-02-2006, Evolutionary Computation Group at CINVESTAV, Sección de Computación, Departamento de Ingeniería Eléctrica, CINVESTAV-IPN, México (2006)Google Scholar
  8. 8.
    Eshelman, L.J., Schaffer, J.D.: Real-coded Genetic Algorithms and Interval-Schemata. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms, vol. 2, pp. 187–202. Morgan Kaufmann Publishers, San Mateo, California (1993)Google Scholar
  9. 9.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  10. 10.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms:Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar
  11. 11.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, USA (2005)CrossRefGoogle Scholar
  12. 12.
    Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)Google Scholar
  13. 13.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luis V. Santana-Quintero
    • 1
  • Noel Ramírez-Santiago
    • 1
  • Carlos A. Coello Coello
    • 1
  • Julián Molina Luque
    • 2
  • Alfredo García Hernández-Díaz
    • 3
  1. 1.Electrical Engineering Department, Computer Science SectionCINVESTAV-IPNMéxico D.F.México
  2. 2.Department of Applied Economics (Mathematics)University of MalagaSpain
  3. 3.Department of Quantitative MethodsPablo de Olavide UniversitySevilleSpain

Personalised recommendations