Functional Brain Imaging with Multi-objective Multi-modal Evolutionary Optimization

  • Vojtech Krmicek
  • Michèle Sebag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multi-modal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC).

The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts’ requirements, and flexibly accommodates their changing goals.


Pareto Front Evolutionary Computation Independent Component Analysis Functional Brain Functional Brain Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line learning algorithms. IEEE Transactions on Information Theory 50(9), 2050–2057 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chudova, D., Gaffney, S., Mjolsness, E., Smyth, P.: Translation-invariant mixture models for curve clustering. In: Proc. of the Ninth Int. Conf. on Knowledge Discovery and Data Mining, pp. 79–88. ACM, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Corne, D., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multi-objective optimisation. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Daida, J.: Challenges with verification, repeatability, and meaningful comparison in genetic programming: Gibson’s magic. In: Proc. of GECCO 1999, pp. 1069–1076. Morgan Kaufmann, San Francisco (1999)Google Scholar
  5. 5.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, Chichester (2001)MATHGoogle Scholar
  6. 6.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics (2001)Google Scholar
  7. 7.
    Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)CrossRefGoogle Scholar
  8. 8.
    Hmlinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys 65, 413–497 (1993)CrossRefGoogle Scholar
  9. 9.
    Keim, D.A., Schneidewind, J., Sips, M.: Circleview: a new approach for visualizing time-related multidimensional data sets. In: Proc. of Advanced Visual Interfaces, pp. 179–182. ACM Press, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Lal, T.: Machine Learning Methods for Brain-Computer Interfaces. PhD thesis, Max Plank Institute for Biological Cybernetics (2005)Google Scholar
  11. 11.
    Laumanns, M., Thiele, L., Deb, K., Zitsler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)CrossRefGoogle Scholar
  12. 12.
    Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evolutionary Computation 10(3), 207–234 (2002)CrossRefGoogle Scholar
  13. 13.
    Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user fatigue in IGAs: partial ordering, support vector machines, and synthetic fitness. In: Proc. of GECCO 2005, pp. 1363–1370. ACM, New York (2005)CrossRefGoogle Scholar
  14. 14.
    McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., Zhang, D.: Automatic analysis of multimodal group actions in meetings. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 27(3), 305–317 (2005)CrossRefGoogle Scholar
  15. 15.
    Pantazis, D., Nichols, T.E., Baillet, S., Leahy, R.: A comparison of random field theory and permutation methods for the statistical analysis of MEG data. Neuroimage 25, 355–368 (2005)CrossRefGoogle Scholar
  16. 16.
    Roddick, J., Spiliopoulou, M.: A survey of temporal knowledge discovery paradigms and methods. IEEE Trans. on Knowledge and Data Engineering 14(4), 750–767 (2002)CrossRefGoogle Scholar
  17. 17.
    Sebag, M., Tarrisson, N., Teytaud, O., Baillet, S., Lefevre, J.: A multi-objective multi-modal optimization approach for mining stable spatio-temporal patterns. In: Proc. of Int. Joint Conf. on AI, IJCAI 2005, pp. 859–864 (2005)Google Scholar
  18. 18.
    Shekhar, S., Zhang, P., Huang, Y., Vatsavai, R.R.: Spatial data mining. In: Kargupta, H., Joshi, A. (eds.) Data Mining: Next Generation Challenges and Future Directions, AAAI/MIT Press (2003)Google Scholar
  19. 19.
    Wu, K., Chen, S., Yu, P.: Interval query indexing for efficient stream processing. In: ACM Conf. on Information and Knowledge Management, pp. 88–97. ACM Press, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vojtech Krmicek
    • 1
    • 2
  • Michèle Sebag
    • 2
  1. 1.Department of Computer ScienceMasaryk UniversityBrno
  2. 2.IA-TAO, CNRS – INRIA – LRIUniversité Paris SudOrsay

Personalised recommendations