Advertisement

An Evolutionary Approach to the Inference of Phylogenetic Networks

  • Juan Diego Trujillo
  • Carlos Cotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)

Abstract

Phylogenetic networks are models of the evolution of a set of organisms that generalize phylogenetic trees. By allowing the existence of reticulation events (such as recombination, hybridization, or horizontal gene transfer), the model is no longer a tree but a directed acyclic graph (DAG). We consider the problem of finding a phylogenetic network to model a set of sequences of molecular data, using evolutionary algorithms (EAs). To this end, the algorithm has to be adequately designed to handle different constraints regarding the structure of the DAG, and the location of reticulation events. The choice of fitness function is also studied, and several possibilities for this purpose are presented and compared. The experimental evaluation indicates that the EA can satisfactorily recover the underlying evolution model behind the data. A computationally light fitness function seems to provide the best performance.

Keywords

Monte Carlo Horizontal Gene Transfer Directed Acyclic Graph Network Node Tree Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3, 439–449 (1982)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Day, W., Johnson, D., Sankoff, D.: The computational complexity of inferring rooted phylogenies by parsimony. Mathematical Biosciences 81, 33–42 (1986)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Matsuda, H.: Protein phylogenetic inference using maximum likelihood with a genetic algorithm. In: Hunter, L., Klein, T.E. (eds.) 1st Pacific Symposium on Biocomputing 1996, London, pp. 512–523. World Scientific, Singapore (1996)Google Scholar
  4. 4.
    Lewis, P.: A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide sequence data. Molecular Biology and Evolution 15, 277–283 (1998)Google Scholar
  5. 5.
    Moilanen, A.: Searching for the most parsimonious trees with simulated evolution. Cladistics 15, 39–50 (1999)CrossRefGoogle Scholar
  6. 6.
    Cotta, C., Moscato, P.: Inferring phylogenetic trees using evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 720–729. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Shen, J., Heckendorn, R.: Discrete branch length representations for genetic algorithms in phylogenetic search. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 94–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Huson, D., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267 (2006)CrossRefGoogle Scholar
  9. 9.
    Moret, B., Nakhleh, L., Warnow, T., Linder, C., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE Transactions on Computational Biology and Bioinformatics 1, 13–23 (2004)CrossRefGoogle Scholar
  10. 10.
    Hallett, M., Lagergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: 8th Annual International Conference on Computational Molecular Biology, pp. 347–356 (2004)Google Scholar
  11. 11.
    Posada, D., Crandall, K.: The effect of recombination on the accuracy of phylogeny estimation. Journal of Molecular Evolution 54, 396–402 (2002)Google Scholar
  12. 12.
    Nakhleh, L., Warnow, T., Linder, C.: Reconstructing reticulate evolution in species – theory and practice. In: 8th Annual International Conference on Computational Molecular Biology, pp. 337–346 (2004)Google Scholar
  13. 13.
    Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. Journal of Bioinformatics and Computational Biology 2, 173–213 (2004)CrossRefGoogle Scholar
  14. 14.
    Song, Y., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution. Bioinformatics 21, i413–i422 (2005)CrossRefGoogle Scholar
  15. 15.
    Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Mathematical Biosciences 53, 131–147 (1981)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nakhleh, L., Jin, G., Zhao, F., Mellor-Crummey, J.: Reconstructing phylogenetic networks using maximum parsimony. In: Computational Systems Bioinformatics Conference 2005, pp. 93–102. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  17. 17.
    Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using directed graphical models. Molecular Biology and Evolution 17, 875–881 (2000)Google Scholar
  18. 18.
    Makarenkov, V., Kevorkov, D., Legendre, P.: Modeling phylogenetic relationships using reticulated networks. Zoologica Scripta 33, 89–96 (2005)CrossRefGoogle Scholar
  19. 19.
    Huelsenbeck, J., Crandall, K.: Phylogeny estimation and hypothesis testing using maximum likelihood. Annual Review of Ecology and Systematics 28, 437–466 (1997)CrossRefGoogle Scholar
  20. 20.
    Kimura, M.: Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the Natural Academy of Sciences 78, 454–458 (1981)MATHCrossRefGoogle Scholar
  21. 21.
    Lehmann, E.: Nonparametric Statistical Methods Based on Ranks. McGraw-Hill, New York (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Juan Diego Trujillo
    • 1
  • Carlos Cotta
    • 1
  1. 1.Dept. Lenguajes y Ciencias de la Computación, ETSI InformáticaUniversity of MálagaMálagaSpain

Personalised recommendations