Nature-Inspired Algorithms for the Optimization of Optical Reference Signals

  • Sancho Salcedo-Sanz
  • José Saez-Landete
  • Manuel Rosa-Zurera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


This paper presents two nature-inspired approaches to the design of Zero Reference Codes (ZRC) for optical applications, both in one and two dimensions. Specifically we present a genetic algorithm and a simulated annealing hybridized with a restricted search operator to cope with the problem constraints. Extensive experiments have shown that nature-inspired approaches proposed can improve the results of existing techniques for this problem.


Genetic Algorithm Simulated Annealing Reference Signal Direct Algorithm Optical Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  2. 2.
    Yang, X., Yin, C.: A new method for the design of zero reference marks for grating measurement systems. J. Phys. E Sci. Instrum. 19, 34–37 (1986)CrossRefGoogle Scholar
  3. 3.
    Yajun, L.: Autocorrelation function of a bar code system. J. Mod. Opt. 34, 1571–1575 (1987)CrossRefGoogle Scholar
  4. 4.
    Yajun, L.: Optical valve using bar codes. Optik 79, 67–74 (1988)Google Scholar
  5. 5.
    Sáez-Landete, J., Alonso, J., Bernabeu, E.: Design of zero reference codes by means of a global optimization method. Optics Express 13, 195–201 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Huang, W., Dang, X.: Design and analysis of two-dimensional zero-reference marks for alignment systems. Review of Scientific Instruments 74, 3549–3553 (2003)CrossRefGoogle Scholar
  7. 7.
    Séz-Landete, J., Alonso, J., Bernabeu, E.: Design of two-dimensional zero reference codes by means of a global optimization method. Optics Express 13, 4230–4236 (2005)CrossRefGoogle Scholar
  8. 8.
    Jones, D.R.: DIRECT Global optimization algorithm. In: Encyclopedia of Optimization, Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  9. 9.
    Salcedo-Sanz, S.S., Camps-Vals, G., Pŕez-Cruz, F., Sepúlveda-Sanchís, J., Bousoño-Calzón, C.: Enhancing genetic feature selection through restricted search and walsh analysis. IEEE Trans. System, Man and Cybern. Part C 34(4), 398–406 (2005)Google Scholar
  10. 10.
    Kirpatrick, S., Gerlatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kirpatrick, S.: Optimization by simulated annealing–Quantitative studies. J. Stat. Phys. 34, 975–986 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sancho Salcedo-Sanz
    • 1
  • José Saez-Landete
    • 1
  • Manuel Rosa-Zurera
    • 1
  1. 1.Department of Signal Theory and CommunicationsUniversidad de AlcaláAlcalá de Henares, MadridSpain

Personalised recommendations