Advertisement

Evolutionary Local Search for Designing Peer-to-Peer Overlay Topologies Based on Minimum Routing Cost Spanning Trees

  • Peter Merz
  • Steffen Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)

Abstract

Finding overlay topologies for peer-to-peer networks on top of the Internet can be regarded as a network design problem, in which a graph with minimum communication costs is desired. An example of such a graph is a spanning tree connecting all nodes in the overlay. We present evolutionary algorithms incorporating local search for the minimum routing cost spanning tree problem in which the overall routing/communication cost is minimized. We present three types of local search for this problem as well as an evolutionary framework for finding (near)optimal solutions to the problem. Moreover, we present results from a fitness landscape analysis for the three types of local optima that reveal interesting properties of the problem data based on real measurements in the Internet. We demonstrate that our proposed algorithms find near optimum solutions reliably by comparing against a lower bound of the problem.

Keywords

Local Search Span Tree Memetic Algorithm Multicast Tree Network Design Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gnutella: Gnutella Protocol v. 0.4 (2000), http://www.clip2.com/
  2. 2.
    Ripeanu, M., Iamnitchi, A., Foster, I.: Mapping the Gnutella Network. IEEE Internet Computing (2002)Google Scholar
  3. 3.
    Cohen, B.: Incentives Build Robustness in BitTorrent. In: Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA (2003)Google Scholar
  4. 4.
    Chakravarti, A.J., Baumgartner, G., Lauria, M.: The Organic Grid: Self-Organizing Computation on a Peer-to-Peer Network. In: Proceedings of the International Conference on Autonomic Computing (ICAC 2004), New York, NY (2004)Google Scholar
  5. 5.
    Merz, P., Gorunova, K.: Efficient Broadcast in P2P Grids. In: Proceedings of the IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2005), Cardiff, UK (2005)Google Scholar
  6. 6.
    Kubiatowicz, J., et al.: OceanStore: An Architecture for Global-Scale Persistent Storage. In: Proc. of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2000), pp. 190–201 (2000)Google Scholar
  7. 7.
    Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–12 (1987)Google Scholar
  8. 8.
    Johnson, D.S., Lenstra, J.K., Kan, A.H.G.R.: The Complexity of the Network Design Problem. Networks 8, 279–285 (1978)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A Polynomial-Time Approximation Scheme for Minimum Routing Cost Spanning Trees. SIAM Journal on Computing 29, 761–778 (1999)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation Algorithms for Some Optimum Communication Spanning Tree Problems. Discrete Applied Mathematics 102, 245–266 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bellman, R.E.: On a Routing Problem. Quart. of Appl. Mathem. 16, 87–90 (1958)MATHGoogle Scholar
  13. 13.
    Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton Univ. Press, Princeton (1962)MATHGoogle Scholar
  14. 14.
    Sobeih, A., Wang, J., Yurcik, W.: Performance Evaluation and Comparison of Tree and Ring Application-Layer Multicast Overlay Networks. In: Proceedings of the 1st International Computer Engineering Conference: New Technologies for the Information Society (ICENCO), Cairo, Egypt (2004)Google Scholar
  15. 15.
    Lehmann, K.A., Kaufmann, M.: Evolutionary Algorithms for the Self-Organized Evolution of Networks. In: Beyer, H.-G., et al. (eds.) GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, Washington DC, USA, vol. 1, pp. 563–570. ACM Press, New York (2005)CrossRefGoogle Scholar
  16. 16.
    Brosh, E., Shavitt, Y.: Approximation and Heuristic Algorithms for Minimum-Delay Application Layer Multicast Trees. In: The 23rd International Conference on Computer Copmunications, IEEE INFOCOM, Hong Kong (2004)Google Scholar
  17. 17.
    Tan, S.W., Waters, A., Crawford, J.: MeshTree: A Delay optimised Overlay Multicast Tree Building Protocol. Tech. R. 5-05, Univ. of Kent, Canterbury, UK (2005)Google Scholar
  18. 18.
    Lourenco, H.R., Martin, O., Stützle, T.: Iterated Local Search. In: Glover, F., Kochenberger, G. (eds.) Handb. of Metaheuristics, Kluwer Acad. Publ., Dordrecht (2003)Google Scholar
  19. 19.
    Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Technical Report C3P Report 826, Caltech Concurrent Computation Program, California Institue of Technology (1989)Google Scholar
  20. 20.
    Merz, P., Freisleben, B.: Memetic Algorithms for the Traveling Salesman Problem. Complex Systems 13, 297–345 (2001)MATHMathSciNetGoogle Scholar
  21. 21.
    Banerjee, S., Griffin, T., Pias, M.: The Interdomain Connectivity of PlanetLab Nodes. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms for the Quadratic Assignment Problem. IEEE Transactions on Evolutionary Computation 4, 337–352 (2000)CrossRefGoogle Scholar
  23. 23.
    Merz, P.: Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms. Evolutionary Computation, Special Issue on Memetic Evolutionary Algorithms 12, 303–326 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Merz
    • 1
  • Steffen Wolf
    • 1
  1. 1.Department of Computer ScienceUniversity of KaiserslauternGermany

Personalised recommendations