Advertisement

cAS: Ant Colony Optimization with Cunning Ants

  • Shigeyoshi Tsutsui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)

Abstract

In this paper, we propose a variant of an ACO algorithm called the cunning Ant System (cAS). In cAS, each ant generates a solution by borrowing a part of a solution which was generated in previous iterations, instead of generating the solution entirely from pheromone density. Thus we named it, cunning ant. This cunning action reduces premature stagnation and exhibits good performance in the search. The experimental results showed cAS worked very well on the TSP and it may be one of the most promising ACO algorithms.

Keywords

Travel Salesman Problem Travel Salesman Problem Quadratic Assignment Problem Pheromone Trail Tour Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Trans. on SMC-Part B 26(1), 29–41 (1996)Google Scholar
  2. 2.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE TEC 1(1), 53–66 (1997)Google Scholar
  3. 3.
    Stützle, T., Hoos, H.: Max-min ant system. Future Generation Computer Systems 16(9), 889–914 (2000)CrossRefGoogle Scholar
  4. 4.
    Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colony for the quadratic assignment problem. J. of the Operational Research Society 50, 167–176 (1999)MATHGoogle Scholar
  5. 5.
    Stützle, T.: An ant approach to the flowshop problem. In: Proc. of the 6th European Congress in Intelligent Thech. and Com., vol. 3, pp. 1560–1564 (1998)Google Scholar
  6. 6.
    Bullnheimer, B., Hartl, R.F., Strauss, C.: An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research 89, 319–328 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT press, Massachusetts (2004)MATHCrossRefGoogle Scholar
  8. 8.
    Tsutsui, S.: Probabilistic model-building genetic algorithms in permutation representation domain using edge histogram. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 224–233. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21(1), 5–20 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Acan, A.: An external memory implementation in ant colony optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 73–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Acan, A.: An external partial permutations memory for ant colony optimization. In: Proc. of the 5th European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 1–11 (2005)Google Scholar
  12. 12.
    Wiesemann, W., Stützle, T.: An experimental investigation of iterated ants for the quadratic assignment problem. IRIDIA Technical Report Series Technical Report TR/IRIDIA/2006-003 (2006)Google Scholar
  13. 13.
    Tsutsui, S.: An enhanced aggregation pheromone system for real-parameter optimization in the aco metaphor. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Tsutsui, S., Pelikan, M., Goldberg, D.E.: Using edge histogram models to solve permutation problems with probabilistic model-building genetic algorithms. IlliGAL Report No. 2003022 (2003)Google Scholar
  15. 15.
    Gambardella, L.M., Dorigo, M.: Solving symmetric and asymmetric tsps by ant colonies. In: Proc. the IEEE Int. Conf. on Evo. Comp (ICEC 1996), pp. 622–627 (1996)Google Scholar
  16. 16.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Operations Research 21, 498–516 (1973)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large traveling salesman problems. INFORMS J. on Computing 15, 82–92 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Johnson, D.S.: Experimental analysis of heuristics for the stsp. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and Variations, vol. 9, pp. 369–443 (2002)Google Scholar
  19. 19.
    Concorde tsp solver, Ansi c code as gzipped tar file (2005), http://www.tsp.gatech.edu/concorde.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shigeyoshi Tsutsui
    • 1
  1. 1.Hannan UniversityMatsubara OsakaJapan

Personalised recommendations