Advertisement

Niche Radius Adaptation in the CMA-ES Niching Algorithm

  • Ofer M. Shir
  • Thomas Bäck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)

Abstract

Following the introduction of two niching methods within Evolution Strategies (ES), which have been presented recently and have been successfully applied to theoretical high-dimensional test functions, as well as to a real-life high-dimensional physics problem, the purpose of this study is to address the so-called niche radius problem.

A new concept of adaptive individual niche radius, introduced here for the first time, is applied to the ES Niching with Covariance Matrix Adaptation (CMA) method. The proposed method is described in detail, and then tested on high-dimensional theoretical test functions.

It is shown to be robust and to achieve satisfying results.

Keywords

Evolution Strategy Search Point Evolution Strategy Covariance Matrix Adaptation Evolution Strategy Covariance Matrix Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mahfoud, S.: Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois at Urbana Champaign (1995)Google Scholar
  2. 2.
    Bäck, T.: Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In: Michalewicz, Z., Schaffer, J.D., Schwefel, H.P., Fogel, D.B., Kitano, H. (eds.) Proc. First IEEE Conf. Evolutionary Computation (ICEC 1994), Orlando, FL, vol. 1, IEEE Press, Piscataway (1994)Google Scholar
  3. 3.
    Bäck, T.: Evolutionary algorithms in theory and practice. Oxford University Press, New York (1996)MATHGoogle Scholar
  4. 4.
    Shir, O.M., Bäck, T.: Niching in evolution strategies. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2005, ACM Press, New York (2005)Google Scholar
  5. 5.
    Shir, O.M., Bäck, T.: Dynamic niching in evolution strategies with covariance matrix adaptation. In: Proceedings of the 2005 Congress on Evolutionary Computation CEC 2005, IEEE Press, Piscataway (2005)Google Scholar
  6. 6.
    Shir, O.M., Siedschlag, C., Bäck, T., Vrakking, M.J.: Niching in evolution strategies and its application to laser pulse shaping. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 85–96. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Jelasity, M.: Uego, an abstract niching technique for global optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Gan, J., Warwick, K.: Dynamic niche clustering: A fuzzy variable radius niching technique for multimodal optimisation in GAs. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, IEEE Press, Los Alamitos (2001)Google Scholar
  9. 9.
    Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and disruptive recombination in (μ, λ)-ea on multimodal fitness landscapes. In: GECCO 2005. Proceedings of the 2005 conference on Genetic and evolutionary computation, ACM Press, New York (2005)Google Scholar
  10. 10.
    Cioppa, A.D., Stefano, C.D., Marcelli, A.: On the role of population size and niche radius in fitness sharing. IEEE Trans. Evolutionary Computation 8 (2004)Google Scholar
  11. 11.
    Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, Lawrence Erlbaum Associates, Inc., Mahwah (1987)Google Scholar
  12. 12.
    Miller, B., Shaw, M.: Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC 1996), New York, NY, USA (1996)Google Scholar
  13. 13.
    Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis (1975)Google Scholar
  14. 14.
    Shir, O.M., Bäck, T.: Niching in evolution strategies. Technical report (2005)Google Scholar
  15. 15.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9 (2001)Google Scholar
  16. 16.
    Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic function optimization. In: Proceedings of the third international conference on Genetic algorithms, Morgan Kaufmann Publishers Inc., San Francisco (1989)Google Scholar
  17. 17.
    Hansen, N., Kern, S.: Evaluating the cma evolution strategy on multimodal test functions. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, Springer, Heidelberg (1998)Google Scholar
  18. 18.
    Törn, A., Zilinskas, A.: Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ofer M. Shir
    • 1
  • Thomas Bäck
    • 1
    • 2
  1. 1.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenLeidenThe Netherlands
  2. 2.NuTech SolutionsDortmundGermany

Personalised recommendations