Product Geometric Crossover

  • Alberto Moraglio
  • Riccardo Poli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. In this paper, we introduce the important notion of product geometric crossover that allows to build new geometric crossovers combining pre-existing geometric crossovers in a simple way.


Search Operator Binary String Structural Composition Permutation Representation Interval Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van de Vel, M.L.J. (ed.): Theory of Convex Structures. North-Holland, Amsterdam (1993)MATHGoogle Scholar
  2. 2.
    Deza, M.M., Laurent, M. (eds.): Geometry of Cuts and Metrics. Springer, Heidelberg (1997)MATHGoogle Scholar
  3. 3.
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University of New Mexico (1995)Google Scholar
  4. 4.
    Moraglio, A., Poli, R.: Topological interpretation of crossover. In: Proceedings of Gecco 2004, pp. 1377–1388 (2004)Google Scholar
  5. 5.
    Moraglio, A., Poli, R.: Geometric crossover for the permutation representation. Technical Report CSM-429, Department of Computer Science, University of Essex (2005)Google Scholar
  6. 6.
    Moraglio, A., Poli, R.: Topological crossover for the permutation representation. In: GECCO 2005 Workshop on Theory of Representations (2005)Google Scholar
  7. 7.
    Moraglio, A., Poli, R., Seehuus, R.: Geometric crossover for biological sequences. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 121–132. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Moraglio, A., Togelius, J., Lucas, S.: Product geometric crossover for the sudoku puzzle. In: Proceedings of IEEE CEC 2006 (to appear, 2006)Google Scholar
  9. 9.
    Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of Applied Optimization. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  10. 10.
    Sutherland, W.A. (ed.): Introduction to metric and topological spaces. Oxford University Press, Oxford (1975)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alberto Moraglio
    • 1
  • Riccardo Poli
    • 1
  1. 1.Dept. of Computer ScienceUniversity of EssexUK

Personalised recommendations