Sesqui-Pushout Rewriting
Conference paper
Abstract
Sesqui-pushout (SqPO) rewriting—“sesqui” means “one and a half” in Latin—is a new algebraic approach to abstract rewriting in any category. SqPO rewriting is a deterministic and conservative extension of double-pushout (dpo) rewriting, which allows to model “deletion in unknown context”, a typical feature of single-pushout (spo) rewriting, as well as cloning.
After illustrating the expressiveness of the proposed approach through a case study modelling an access control system, we discuss sufficient conditions for the existence of final pullback complements and we analyze the relationship between SqPO and the classical dpo and spo approaches.
Keywords
Algebraic Approach Graph Transformation Graph Grammar Access Control Model Primitive Operation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bauderon, M.: A uniform approach to graph rewriting: The pullback approach. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 101–115. Springer, Heidelberg (1995)Google Scholar
- 2.Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation—part I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, ch. 3, vol. 1. World Scientific, Singapore (1997)Google Scholar
- 3.Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback complements. Journal of Pure and Applied Algebra 49(1-2), 103–116 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in high level replacement systems. Mathematical Structures in Computer Science 1, 361–404 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation—part II: Single pushout approach and comparison with double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, ch. 4, vol. 1. World Scientific, Singapore (1997)Google Scholar
- 6.Ehrig, H., Löwe, M.: Categorical principles, techniques and results for high-level-replacement systems in computer science. Applied Categorical Structures 1, 21–50 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
- 7.Ehrig, H., Pfender, M., Schneider, H.-J.: Graph grammars: An algebraic approach. In: Proc. 14th IEEE Symp. on Switching and Automata Theory, pp. 167–180 (1973)Google Scholar
- 8.Ferriolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control. Artech House computer security series. Artech House (2003), ISBN: 1-580-53370-1Google Scholar
- 9.Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, The Netherlands (1984)zbMATHGoogle Scholar
- 10.Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited. Mathematical Structures in Computer Science 11(5), 637–688 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 11.Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Commun. ACM 19(8), 461–471 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
- 12.Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback transitions and coalgebraic loose semantics for graph transformation systems. Applied Categorical Structures 9(1) (2001)Google Scholar
- 13.Kahl, W.: A fibred approach to rewriting — how the duality between adding and deleting cooperates with the difference between matching and rewriting. Technical Report 9702, Fakultät für Informatik, Universität der Bundeswehr München (May 1997)Google Scholar
- 14.Kennaway, R.: Graph Rewriting in Some Categories of Partial Morphisms. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 490–504. Springer, Heidelberg (1991)CrossRefGoogle Scholar
- 15.Koch, M., Mancini, L.V., Parisi-Presicce, F.: A formal model for role-based access control using graph transformation. In: Cuppens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895, pp. 122–139. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 16.Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Informatics and Applications 39(2), 511–546 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
- 17.Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical Computer Science 109, 181–224 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
- 18.Monserrat, M., Rosselló, F., Torrens, J., Valiente, G.: Single pushout rewriting in categories of spans I: The general setting. Technical Report LSI-97-23-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (1997)Google Scholar
- 19.Robinson, E., Rosolini, G.: Categories of partial maps. Information and Computation 79(2), 95–130 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
- 20.Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models. IEEE Computer 29(2), 38–47 (1996)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2006