Advertisement

Toposes Are Adhesive

  • Stephen Lack
  • Paweł Sobociński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4178)

Abstract

Adhesive categories have recently been proposed as a categorical foundation for facets of the theory of graph transformation, and have also been used to study techniques from process algebra for reasoning about concurrency. Here we continue our study of adhesive categories by showing that toposes are adhesive. The proof relies on exploiting the relationship between adhesive categories, Brown and Janelidze’s work on generalised van Kampen theorems as well as Grothendieck’s theory of descent.

Keywords

Graph Transformation Process Algebra Comparison Functor Extensive Category Pullback Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, R., Janelidze, G.: Van Kampen theorems for categories of covering morphisms in lextensive categories. Journal of Pure and Applied Algebra 119, 255–263 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Carboni, A., Janelidze, G., Kelly, G.M., Paré, R.: Localization and stabilization for factorization systems. Applied Categorical Structures 5(1), 1–58 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carboni, A., Johnstone, P.T.: Connected limits, familial representability and Artin glueing. Mathematical Structures in Computer Science 5, 441–449 (1995)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra 84(2), 145–158 (1993)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. Mathematical Structures in Computer Science 1 (1991)Google Scholar
  6. 6.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the dpo approach to graph rewriting. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Fiore, M., Staton, S.: Comparing operational models of name-passing process calculi. Information and Computation (to appear, 2005)Google Scholar
  9. 9.
    Janelidze, G., Tholen, W.: Facets of descent, i. Applied Categorical Structures 2, 245–281 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Johnstone, P.T.: Sketches of an Elephant: A topos theory compendium, vol. 1. Clarendon Press, Oxford (2002)Google Scholar
  11. 11.
    Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Informatics and Applications 39(3), 511–546 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Logic in Computer Science, LiCS 2005, pp. 311–320. IEEE Press, Los Alamitos (2005)Google Scholar
  14. 14.
    Wyler, O.: Lecture Notes on Topoi and Quasitopoi. World Scientific, Singapore (1991)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stephen Lack
    • 1
  • Paweł Sobociński
    • 2
  1. 1.School of Computing and MathematicsUniversity of Western SydneyAustralia
  2. 2.Computer LaboratoryUniversity of CambridgeUnited Kingdom

Personalised recommendations