Nested Quantification in Graph Transformation Rules

  • Arend Rensink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4178)


In this paper we describe a way to integrate Taentzer’s rule amalgamation with the recently proposed notions of nested graph conditions. The resulting so-called quantified graph transformation rules include (universally and existentially) quantified sub-structures in a flexible way. This can be used for instance to specify a larger-step operational semantics, thus improving the scalability of graph transformation as a technique for software verification.


Application Condition Graph Transformation Interaction Scheme Graph Transformation Rule Host Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Specifying integrated refactoring with distributed graph transformations. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 220–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    de Lara, J., Ermel, C., Taentzer, G., Ehrig, K.: Parallel graph transformation for model simulation applied to timed transition petri nets. In: Graph Transformation and Visual Modelling Techniques (GTVMT). ENTCS, vol. 109, pp. 17–29 (2004)Google Scholar
  3. 3.
    Ermel, C., Taentzer, G., Bardohl, R.: Simulating algebraic high-level nets by parallel attributed graph transformation. In: Kreowski, et al. [14], pp. 64–83Google Scholar
  4. 4.
    FuJaBa tool suite: From UML to Java and back again (2005),
  5. 5.
    Glabbeek, R.V., Plotkin, G.: Configuration structures. In: Tenth Annual Symposium on Logic in Computer Science, pp. 199–209. IEEE Computer Society, Los Alamitos (1995)CrossRefGoogle Scholar
  6. 6.
    The graph rewrite and transformation (GReAT) tool suite (2006),
  7. 7.
    Graphs for object-oriented verification (GROOVE) (2006),
  8. 8.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundamenta Informaticae 26(3/4), 287–313 (1996)MATHMathSciNetGoogle Scholar
  9. 9.
    Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for high-level structures. In: Kreowski, et al. [14], pp. 293–308Google Scholar
  10. 10.
    Hausmann, J.H.: DMM: Dynamic Meta Modelling — A Semantics Description Language for Visual Modeling Languages. PhD thesis, University of Paderborn (2006)Google Scholar
  11. 11.
    Hoffmann, B.: Graph transformation with variables. In: Kreowski, et al. [14], pp. 101–115Google Scholar
  12. 12.
    Hurkens, C.A.J.: Spreading gossip efficiently. Nieuw Archief voor Wiskunde 1(2), 208 (2000)MathSciNetGoogle Scholar
  13. 13.
    Kastenberg, H., Kleppe, A., Rensink, A.: Defining object-oriented execution semantics using graph transformations. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 186–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G.: Formal Methods in Software and Systems Modeling. LNCS, vol. 3393. Springer, Heidelberg (2005)MATHCrossRefGoogle Scholar
  15. 15.
    Minas, M., Hoffmann, B.: An example of cloning graph transformation rules for programming. In: Bruni, R., Varró, D. (eds.) Fifth International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT), pp. 235–244 (2006)Google Scholar
  16. 16.
    Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Schürr, A.: Logic based programmed structure rewriting systems. Fundamenta Informaticae 26(3/4), 363–385 (1996)MATHMathSciNetGoogle Scholar
  18. 18.
    Taentzer, G.: Parallel and Distributed Graph Transformation: Formal Description and Application to Communication-Based Systems. PhD thesis, Technische Universität Berlin (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Arend Rensink
    • 1
  1. 1.Department of Computer ScienceUniversity of TwenteThe Netherlands

Personalised recommendations