Advertisement

Semantic Querying of Mathematical Web Service Descriptions

  • Rebhi Baraka
  • Wolfgang Schreiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4184)

Abstract

This paper describes a semantic extension to the Mathematical Services Query Language (MSQL). MSQL is a language for querying registry-published mathematical Web service descriptions expressed in the Mathematical Services Description Language (MSDL). The semantic extension allows queries in MSQL to be based on the underlying semantics of service descriptions; the MSQL engine processes these queries with the help of an automated reasoner.

Keywords

Service Description Denotational Semantic Registry Query Semantic Querying Query Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baraka, R.: Mathematical Services Query Language: Design, Formalization, and Implementation. Technical report, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria (September 2005), See: ftp://ftp.risc.uni-linz.ac.at/pub/techreports/
  2. 2.
    Baraka, R.: Mathematical Services Query Language (MSQL) API. Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria (September 2005), See: http://poseidon.risc.uni-linz.ac.at:8080/results/msql/doc/index.html
  3. 3.
    Baraka, R., Caprotti, O., Schreiner, W.: A Web Registry for Publishing and Discovering Mathematical Services. In: Proc. of IEEE Conf. on e-Technology, e-Commerce, and e-Service, Hong Kong Baptist University, Hong Kong, March 29 - April 1, 2005. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  4. 4.
    Baraka, R., Schreiner, W.: Querying Registry-Published Mathematical Web Services. In: Proc. of the IEEE 20th Int. Conf. on Advanced Information Networking and Applications (AINA 2006), Vienna, Austria, April 18 - April 20, 2006. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  5. 5.
    Barrett, C.W., Berezin, S.: CVC Lite: A New Implementation of the Cooperating Validity Checker Category B. In: Proc. of 16th Int. Conf. on Computer Aided Verification, Boston, MA, USA, July 13-17, 2004. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaëtano, M., Kohlhase, M.: The OpenMath Standard (v 2.0). The OpenMath Society (June 2004), See: http://www.openmath.org/cocoon/openmath/index.html
  7. 7.
    Caprotti, O., Dewar, M., Turi, D.: Mathematical Service Matching Using Description Logic and OWL. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 73–87. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Caprotti, O., Schreiner, W.: Towards a Mathematical Service Description Language. In: International Congress of Mathematical Software ICMS 2002, Bejing, China, August 17-19, 2002. World Scientific Publishing, Singapore (2002)Google Scholar
  9. 9.
    Haarslev, V., Moller, R.: Description of the RACER system and its applications. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Instance Store - Database Support for Reasoning over Individuals. The University of Manchester (2002), See: http://instancestore.man.ac.uk/instancestore.pdf
  11. 11.
    Martin, D.L., Paolucci, M., McIlraith, S.A., Burstein, M.H., McDermott, D.V., McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.P.: Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    MathBroker II: Brokering Distributed Mathematical Services. Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria (April 2006), http://www.risc.uni-linz.ac.at/research/parallel/projects/mathbroker2/
  13. 13.
    McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview. In: W3C Recommendation (February 2004), See: http://www.w3.org/TR/owl-features/
  14. 14.
    MONET — Mathematics on the Web. The MONET Consortium (April 2004), http://monet.nag.co.uk
  15. 15.
    Naylor, W., Padget, J.: Semantic Matching for Mathematical Services. In: Proc. of the 4th Int. conf. on Mathematical Knowledge Management, Bremen, Germany, July 15 - 17, 2005. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    OMDoc: A Standard for Open Mathematical Documents. MathWeb.org (September 2005), See: http://www.mathweb.org/omdoc/
  17. 17.
    OWL-S: Semantic Markup for Web Services. W3C Member Submission (November 2004), See: http://www.w3.org/Submission/OWL-S/
  18. 18.
    Schmidt, D.A.: Denotational Semantics – A Methodology for Language Development. Allyn and Bacon, Boston (1986)Google Scholar
  19. 19.
    Schreiner, W.: The RISC ProofNavigator. Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria (March 2006), See: http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator/
  20. 20.
    Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.: METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery of Web Services. Journal of Information Technology and Management 6(1), 17–39 (2005)CrossRefGoogle Scholar
  21. 21.
    Web Service Modeling Ontology (WSMO). W3C Member Submission (June 2005), See: http://www.w3.org/Submission/WSMO/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rebhi Baraka
    • 1
  • Wolfgang Schreiner
    • 1
  1. 1.Research Institute for Symbolic Computation (RISC)Johannes Kepler UniversityLinzAustria

Personalised recommendations