Fréchet Distance for Curves, Revisited

  • Boris Aronov
  • Sariel Har-Peled
  • Christian Knauer
  • Yusu Wang
  • Carola Wenk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4168)


We revisit the problem of computing the Fréchet distance between polygonal curves, focusing on the discrete Fréchet distance, where only distance between vertices is considered. We develop efficient approximation algorithms for two natural classes of curves: κ-bounded curves and backbone curves, the latter of which are widely used to model molecular structures. We also propose a pseudo–output-sensitive algorithm for computing the discrete Fréchet distance exactly. The complexity of the algorithm is a function of the complexity of the free-space boundary, which is quadratic in the worst case, but tends to be lower in practice.


Decision Problem White Cell Decision Procedure Binary Search Dynamic Time Warping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAI+01]
    Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized self-approaching curves. Discrete Applied Mathematics 109, 3–24 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. [AB05]
    Alt, H., Buchin, M.: Semi-computability of the Fréchet distance between surfaces. In: Proc. 21th European Workshop on Computational Geometry (2005)Google Scholar
  3. [AERW03]
    Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms 49, 262–283 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. [AG95]
    Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Internat. J. Comput. Geom. Appl. 5, 75–91 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. [AHPMW05]
    Agarwal, P.K., Har-Peled, S., Mustafa, N., Wang, Y.: Near-linear time approximation algorithms for curve simplification in two and three dimensions. Algorithmica (to appear, 2005)Google Scholar
  6. [AKW01]
    Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the fréchet distance. In: Proceedings 18th International Symposium on Theoretical Aspects of Computer Science, pp. 63–74 (2001)Google Scholar
  7. [AKW04]
    Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45–58 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. [AST94]
    Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algorithms 17, 292–318 (1994)CrossRefMathSciNetGoogle Scholar
  9. [BBW06]
    Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet distance between simple polygons in polynomial time. In: Proc. 22st Annu. ACM Sympos. Comput. Geom., pp. 80–87 (2006)Google Scholar
  10. [BPSW05]
    Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proc. 31st VLDB Conference, pp. 853–864 (2005)Google Scholar
  11. [CG86]
    Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1, 133–162 (1986)MATHCrossRefMathSciNetGoogle Scholar
  12. [CK95]
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1), 67–90 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. [CM05]
    Clausen, M., Mosig, A.: Approximately matching polygonal curves with respect to the Fréchet distance. Comput. Geom. Theory Appl. 30, 113–127 (2005)MATHMathSciNetGoogle Scholar
  14. [EGHPM01]
    Efrat, A., Guibas, L.J., Har-Peled, S., Murali, T.M.: Morphing between polylines. In: Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pp. 680–689 (2001)Google Scholar
  15. [EM94]
    Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)Google Scholar
  16. [GIP99]
    Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein structure similarity. In: Proc. 40th Annu. IEEE Sympos. Found. Comput. Sci., pp. 512–522 (1999)Google Scholar
  17. [Ind02]
    Indyk, P.: Approximate nearest neighbor algorithms for Fréchet distance via product metrics. In: Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 102–106 (2002)Google Scholar
  18. [KHM+98]
    Kwong, S., He, Q.H., Man, K.F., Tang, K.S., Chau, C.W.: Parallel genetic-based hybrid pattern matching algorithm for isolated word recognition. Int. J. Pattern Recognition & Artificial Intelligence 12(5), 573–594 (1998)CrossRefGoogle Scholar
  19. [KKS05]
    Kim, M.S., Kim, S.W., Shin, M.: Optimization of subsequence matching under time warping in time-series databases. In: Proc. ACM symp. Applied comput., pp. 581–586 (2005)Google Scholar
  20. [KP99]
    Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping to massive dataset. In: Proc. of the Third Euro. Conf. Princip. Data Mining and Know. Disc., London, UK, pp. 1–11 (1999)Google Scholar
  21. [KS94]
    Kolinski, A., Skolnick, J.: Monte carlo simulations of protein folding: Lattice model and interaction scheme. Proteins 18, 338–352 (1994)CrossRefGoogle Scholar
  22. [Lue78]
    Lueker, G.S.: A data structure for orthogonal range queries. In: Proc. 19th Annu. IEEE Sympos. Found. Comput. Sci., pp. 28–34 (1978)Google Scholar
  23. [PP90]
    Parizeau, M., Plamondon, R.: A comparative analysis of regional correlation, dynamic time warping, and skeletal tree matching for signature verification. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 710–717 (1990)CrossRefGoogle Scholar
  24. [Rot94]
    Rote, G.: Curves with increasing chords. Math. Proc. Camb. Phil. Soc. 115, 1–12 (1994)MATHCrossRefMathSciNetGoogle Scholar
  25. [Rot05]
    Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Technical Report ECG-TR-241108-01 (May 2005)Google Scholar
  26. [Sal89]
    Salowe, J.S.: L  ∞  interdistance selection by parametric search. Information Processing Letters 30, 9–14 (1989)MATHCrossRefMathSciNetGoogle Scholar
  27. [Wen02]
    Wenk, C.: Shape Matching in Higher Dimensions. PhD thesis, Dept. of Comput. Sci., Freie Universität Berlin (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Boris Aronov
    • 1
  • Sariel Har-Peled
    • 2
  • Christian Knauer
    • 3
  • Yusu Wang
    • 4
  • Carola Wenk
    • 5
  1. 1.Dept. of Comp. and Info. Sci.Polytechnic Univ.BrooklynUSA
  2. 2.Dept. of Comp. Sci.University of IllinoisUrbanaUSA
  3. 3.Inst. of Comp. Sci.Freie Universität BerlinBerlinGermany
  4. 4.Dept. of Comp. Sci. and EngineeringThe Ohio State Univ.ColumbusUSA
  5. 5.Dept. of Comp. Sci.Univ. of Texas at San AntonioSan AntonioUSA

Personalised recommendations