Exact and Efficient Construction of Planar Minkowski Sums Using the Convolution Method

  • Ron Wein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4168)


The Minkowski sum of two sets A,B ∈ I R d , denoted AB, is defined as \(\left\{ a + b ~\vert~ a \in A, b \in B \right\}\). We describe an efficient and robust implementation for the construction of Minkowski sums of polygons in I R2 using the convolution of the polygon boundaries. This method allows for faster computation of the sum of non-convex polygons in comparison with the widely-used methods for Minkowski-sum computation that decompose the input polygons into convex sub-polygons and compute the union of the pairwise sums of these convex sub-polygon.


Computational Geometry Convex Polygon Steiner Point Simple Polygon Convolution Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Computational Geometry: Theory and Applications 21, 39–61 (2002)MATHMathSciNetGoogle Scholar
  2. 2.
    Chazelle, B., Dobkin, D.P.: Optimal convex decompositions. In: Toussaint, G.T. (ed.) Computational Geometry, pp. 63–133. North-Holland, Amsterdam (1985)Google Scholar
  3. 3.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)MATHGoogle Scholar
  4. 4.
    Flato, E.: Robust and efficient construction of planar Minkowski sums. Master’s thesis, School of Computer Science, Tel-Aviv University (2000),
  5. 5.
    Fogel, E., Wein, R., Halperin, D.: Code flexibility and program efficiency by genericity: Improving Cgal’s arrangements. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 664–676. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Greene, D.H.: The decomposition of polygons into convex parts. In: Preparata, F.P. (ed.) Computational Geometry. Adv. Comput. Res., vol. 1, pp. 235–259. JAI Press, Greenwich (1983)Google Scholar
  7. 7.
    Guibas, L.J., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: Proc. 24th Sympos. Found. Comput. Sci., pp. 100–111 (1983)Google Scholar
  8. 8.
    Guibas, L.J., Seidel, R.: Computing convolutions by reciprocal search. Discrete and Computational Geometry 2, 175–193 (1987)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Har-Peled, S., Chan, T.M., Aronov, B., Halperin, D., Snoeyink, J.: The complexity of a single face of a Minkowski sum. In: Proc. 7th Canad. Conf. Comput. Geom., pp. 91–96 (1995)Google Scholar
  10. 10.
    Hertel, S., Mehlhorn, K.: Fast triangulation of simple polygons. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 207–218. Springer, Heidelberg (1983)Google Scholar
  11. 11.
    Kaul, A., O’Connor, M.A., Srinivasan, V.: Computing Minkowski sums of regular polygons. In: Proc. 3rd Canad. Conf. Comput. Geom., pp. 74–77 (1991)Google Scholar
  12. 12.
    Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete and Computational Geometry 1, 59–71 (1986)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mehlhorn, K., Näher, S.: Leda: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (2000)Google Scholar
  14. 14.
    Needham, T.: Visual Complex Analysis. Oxford University Press, Oxford (1997)MATHGoogle Scholar
  15. 15.
    Ramkumar, G.D.: An algorithm to compute the Minkowski sum outer-face of two simple polygons. In: Proc. 12th Sympos. Comput. Geom., pp. 234–241 (1996)Google Scholar
  16. 16.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming techniques applied to Cgal’s arrangement package. In: Proc. Wrkshp. Library-Centric Software Design (2005),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ron Wein
    • 1
  1. 1.School of Computer ScienceTel-Aviv UniversityIsrael

Personalised recommendations