The Price of Resiliency: A Case Study on Sorting with Memory Faults

  • Umberto Ferraro-Petrillo
  • Irene Finocchi
  • Giuseppe F. Italiano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4168)


We address the problem of sorting in the presence of faults that may arbitrarily corrupt memory locations, and investigate the impact of memory faults both on the correctness and on the running times of mergesort-based algorithms. To achieve this goal, we develop a software testbed that simulates different fault injection strategies, and we perform a thorough experimental study using a combination of several fault parameters. Our experiments give evidence that simple-minded approaches to this problem are largely impractical, while the design of more sophisticated resilient algorithms seems really worth the effort. Another contribution of our computational study is a carefully engineered implementation of a resilient sorting algorithm, which appears robust to different memory fault patterns.


Memory Location Correctness Threshold Sorting Algorithm Fault Injection Merging Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assaf, S., Upfal, E.: Fault-tolerant sorting networks. SIAM J. Discrete Math. 4(4), 472–480 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Borgstrom, R.S., Rao Kosaraju, S.: Comparison based search in the presence of errors. In: Proc. 25th STOC, pp. 130–136 (1993)Google Scholar
  3. 3.
    Cook, C.R., Kim, D.J.: Best sorting algorithms for nearly sorted lists. Comm. of the ACM 23, 620–624 (1980)CrossRefGoogle Scholar
  4. 4.
    Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy information. SIAM J. on Comput. 23, 1001–1018 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Finocchi, I., Italiano, G.F.: Sorting and searching in the presence of memory faults (without redundancy). In: Proc. 36th STOC, pp. 101–110 (2004)Google Scholar
  6. 6.
    Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal sorting and searching in the presence of memory faults. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Kleitman, D.J., Meyer, A.R., Rivest, R.L., Spencer, J., Winklmann, K.: Coping with errors in binary search procedures. J. Comp. Syst. Sci. 20, 396–404 (1980)MATHCrossRefGoogle Scholar
  8. 8.
    Leighton, T., Ma, Y.: Tight bounds on the size of fault-tolerant merging and sorting networks with destructive faults. SIAM J. on Comput. 29(1), 258–273 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Pelc, A.: Searching games with errors: Fifty years of coping with liars. Theoret. Comp. Sci. 270, 71–109 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Van de Goor, A.J.: Testing semiconductor memories: Theory and practice. ComTex Publishing, Gouda (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Umberto Ferraro-Petrillo
    • 1
  • Irene Finocchi
    • 2
  • Giuseppe F. Italiano
    • 3
  1. 1.Dipartimento di Statistica, Probabilità e Statistiche ApplicateUniversità di Roma “La Sapienza”RomeItaly
  2. 2.Dipartimento di InformaticaUniversità di Roma “La Sapienza”RomaItaly
  3. 3.Dipartimento di Informatica, Sistemi e ProduzioneUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations