An MINLP Solution Method for a Water Network Problem

  • Cristiana Bragalli
  • Claudia D’Ambrosio
  • Jon Lee
  • Andrea Lodi
  • Paolo Toth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4168)


We propose a solution method for a water-network optimization problem using a nonconvex continuous NLP relaxation and an MINLP search. We report successful computational experience using available MINLP software on problems from the literature and on difficult real-world instances.


Water Distribution System Water Distribution Network MILP Model MINLP Model Water Distribution Network Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Duxbury Press/Brooks/Cole Publishing Co. (2003)Google Scholar
  2. 2.
    Leyffer, S.: User manual for MINLP_BB. Technical report, University of Dundee (April 1998; revised, March 1999)Google Scholar
  3. 3.
    Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Technical report, IBM Research Report RC23771 (2005)Google Scholar
  4. 4.
    Bonami, P., Lee, J.: BONMIN users manual. Technical report (June 2006)Google Scholar
  5. 5.
  6. 6.
    Walski, T.M.: Analysis of Water Distribution Systems. Van Nostrand Reinhold Company, New York (1984)Google Scholar
  7. 7.
    Artina, S., Walker, J.: Sull’uso della programmazione a valori misti nel dimensionamento di costo minimo di reti in pressione. In: Atti dell’Accademia delle Scienze dell’Istituto di Bologna (Anno 271, Serie III, Tomo X, 1983)Google Scholar
  8. 8.
    Savic, D., Walters, G.: Genetic algorithms for the least-cost design of water distribution networks. ASCE Journal of Water Resources Planning and Management 123(2), 67–77 (1997)CrossRefGoogle Scholar
  9. 9.
    Cunha, M., Sousa, J.: Water distribution network design optimization: Simulated annealing approach. J. Water Res. Plan. Manage. Div. Soc. Civ. Eng. 125(4), 215–221 (1999)CrossRefGoogle Scholar
  10. 10.
    Fujiwara, O., Khang, D.: A two-phase decomposition method for optimal design of looped water distribution networks. Water Resources Research 26(4), 539–549 (1990)CrossRefGoogle Scholar
  11. 11.
    Eiger, G., Shamir, U., Ben-Tal, A.: Optimal design of water distribution networks. Water Resources Research 30(9), 2637–2646 (1994)CrossRefGoogle Scholar
  12. 12.
    Sherali, H., Subramanian, S., Loganathan, G.: Effective relaxations and partitioning schemes for solving water distribution network design problems to global optimality. Journal of Global Optimization 19, 1–26 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Xu, C., Goulter, I.: Reliability-based optimal design of water distribution networks. Journal of Water Resources Planning and Management 125(6), 352–362 (1999)CrossRefGoogle Scholar
  14. 14.
    Lansey, K., Mays, L.: Optimization model for water distribution system design. Journal of Hydraulic Engineering 115(10), 1401–1418 (1989)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Beale, E., Tomlin, J.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. In: Lawrence, J. (ed.) Proc. of the 5th Intl. Conf. on Operations Research, pp. 447–454 (1970)Google Scholar
  17. 17.
  18. 18.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cristiana Bragalli
    • 1
  • Claudia D’Ambrosio
    • 2
  • Jon Lee
    • 3
  • Andrea Lodi
    • 2
    • 3
  • Paolo Toth
    • 2
  1. 1.DISTARTUniversity of BolognaBolognaItaly
  2. 2.DEISUniversity of BolognaBolognaItaly
  3. 3.IBM TJ Watson Research CenterYorktown HeightsUSA

Personalised recommendations