An LP-Designed Algorithm for Constraint Satisfaction

  • Alexander D. Scott
  • Gregory B. Sorkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4168)


The class Max (r,2)-CSP consists of constraint satisfaction problems with at most two r-valued variables per clause. For instances with n variables and m binary clauses, we present an \(\widetilde{O}({r^{19m/100}})\)-time algorithm. It is the fastest algorithm for most problems in the class (including Max Cut and Max 2-Sat), and in combination with “Generalized CSPs” introduced in a companion paper, also allows counting, sampling, and the solution of problems like Max Bisection that escape the usual CSP framework. Linear programming is key to the design as well as the analysis of the algorithm.


Constraint Satisfaction Constraint Satisfaction Problem Pairwise Constraint Polynomial Factor Binary Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BE05]
    Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–204 (2005)MATHCrossRefMathSciNetGoogle Scholar
  2. [GHNR03]
    Gramm, J., Hirsch, E.A., Niedermeier, R., Rossmanith, P.: Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT. Discrete Appl. Math. 130(2), 139–155 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. [KF02]
    Kulikov, A.S., Fedin, S.S.: Solution of the maximum cut problem in time 2 ∣ E ∣ /4, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 293 (7), 129–138, 183 (2002), Teor. Slozhn. Vychisl.Google Scholar
  4. [KR05]
    Kneis, J., Rossmanith, P.: A new satisfiability algorithm with applications to Max-Cut, Tech. Report AIB-2005-08, Department of Computer Science, RWTH Aachen (2005)Google Scholar
  5. [SS03]
    Scott, A.D., Sorkin, G.B.: Faster algorithms for MAX CUT and MAX CSP, with polynomial expected time for sparse instances. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 382–395. Springer, Heidelberg (2003)Google Scholar
  6. [SS04]
    Scott, A.D., Sorkin, G.B.: A faster exponential-time algorithm for Max 2-Sat, Max Cut, and Max k-Cut, Tech. Report RC23456 (W0412-001), IBM Research Report (December 2004), See:
  7. [SS06]
    Scott, A.D., Sorkin, G.B.: Generalized constraint satisfaction problems, Tech. Report RC23935, IBM Research Report (April 2006), See:
  8. [TSSW00]
    Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. [Wil04]
    Williams, R.: A new algorithm for optimal constraint satisfaction and its implications. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander D. Scott
    • 1
  • Gregory B. Sorkin
    • 2
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Department of Mathematical SciencesIBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations