Skip to main content

Inner-Product Based Wavelet Synopses for Range-Sum Queries

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4168)

Abstract

In recent years wavelet based synopses were shown to be effective for approximate queries in database systems. The simplest wavelet synopses are constructed by computing the Haar transform over a vector consisting of either the raw-data or the prefix-sums of the data, and using a greedy-heuristic to select the wavelet coefficients that are kept in the synopsis. The greedy-heuristic is known to be optimal for point queries w.r.t. the mean-squared-error, but no similar efficient optimality result was known for range-sum queries, for which the effectiveness of such synopses was only shown experimentally.

We construct an operator that defines a norm that is equivalent to the mean-squared error over all possible range-sum queries, where the norm is measured on the prefix-sums vector. We show that the Haar basis (and in fact any wavelet basis) is orthogonal w.r.t. the inner product defined by this novel operator. This allows us to use Parseval-based thresholding, and thus obtain the first linear time construction of a provably optimal wavelet synopsis for range-sum queries. We show that the new thresholding is very similar to the greedy-heuristic that is based on point queries.

For the case of range-sum queries over the raw data, we define a similar operator, and show that Haar basis is not orthogonal w.r.t. the inner product defined by this operator.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11841036_46
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-38876-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. In: Proceedings of 26th International Conference on Very Large Data Bases, VLDB 2000, pp. 111–122 (2000)

    Google Scholar 

  2. Deligiannakis, A., Roussopoulos, N.: Extended wavelets for multiple measures. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 229–240 (2003)

    Google Scholar 

  3. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guarantees. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data (2002)

    Google Scholar 

  4. Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding for maximum-error metrics. In: Proceedings of the 2004 ACM PODS International Conference on Management of Data, pp. 166–176 (2004)

    Google Scholar 

  5. Gibbons, P.B., Matias, Y.: Synopsis data structures for massive data sets. In: External Memory Algorithms. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 50. American Mathematical Society (1999)

    Google Scholar 

  6. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Optimal and approximate computation of summary statistics for range aggregates. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 227–236. ACM Press, New York (2001)

    CrossRef  Google Scholar 

  7. Hardle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets, Approximation and Statistical Applications, vol. 129. Springer, New-York (1998)

    Google Scholar 

  8. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and other quantiles in one pass and with limited memory. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 426–435 (1998)

    Google Scholar 

  9. Matias, Y., Portman, L.: Workload-based wavelet synopses. Technical report, Department of Computer Science, Tel Aviv University (2003)

    Google Scholar 

  10. Matias, Y., Portman, L.: τ-synopses: A system for run-time management of remote synopses. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 865–867. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  11. Matias, Y., Urieli, D.: On the optimality of the greedy heuristic in wavelet synopses for range queries. Technical report, Department of Computer Science, Tel-Aviv University (2004) (revised, 2005)

    Google Scholar 

  12. Matias, Y., Urieli, D.: Optimal workload-based weighted wavelet synopses. In: Proceedings of the 2005 ICDT conference (full version in TCS, special issue of ICDT) (January 2005)

    Google Scholar 

  13. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 448–459 (June 1998)

    Google Scholar 

  14. Meyer, Y.: Wavelets and operators. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992), Translated from the 1990 French original by D. H. Salinger

    MATH  Google Scholar 

  15. Muthukrishnan, S.: Nonuniform sparse approximation using haar wavelet basis. Technical report, DIMACS (May 2004)

    Google Scholar 

  16. Muthukrishnan, S., Strauss, M.: Rangesum histograms. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, pp. 233–242. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  17. Portman, L.: Workload-based wavelet synopses. Master’s thesis, School of Computer Science, Tel Aviv University (2003)

    Google Scholar 

  18. Strauss, M.: Personal communication (October 2005)

    Google Scholar 

  19. Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates of sparse data using wavelets. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 193–204 (June 1999)

    Google Scholar 

  20. Vitter, J.S., Wang, M., Iyer, B.: Data cube approximation and histograms via wavelets. In: Proceedings of Seventh International Conference on Information and Knowledge Management, pp. 96–104 (November 1998)

    Google Scholar 

  21. Wang, M.: Approximation and Learning Techniques in Database Systems. PhD thesis, Duke University (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matias, Y., Urieli, D. (2006). Inner-Product Based Wavelet Synopses for Range-Sum Queries. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_46

Download citation

  • DOI: https://doi.org/10.1007/11841036_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)