Estimating Entropy over Data Streams

  • Lakshminath Bhuvanagiri
  • Sumit Ganguly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4168)


We present an algorithm for estimating entropy of data streams consisting of insertion and deletion operations using \(\tilde{O}(1)\) space.


Data Stream Frequent Item Input Stream Pseudo Random Generator Deletion Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream Systems. In: Proc. of ACM PODS (2002)Google Scholar
  2. 2.
    Bhuvanagiri, L., Ganguly, S., Kesh, D., Saha, C.: Simpler algorithm for estimating frequency moments of data streams. In: Proc. of ACM SODA (2006)Google Scholar
  3. 3.
    Chakrabarti, A., Ba, D.K., Muthukrishnan, S.: Estimating Entropy and Entropy Norm on Data Streams. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 196–205. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Cormode, G., Muthukrishnan, S.: What’s Hot and What’s Not: Tracking Most Frequent Items Dynamically. In: Proc. of ACM PODS (May 2003)Google Scholar
  6. 6.
    Cormode, G., Muthukrishnan, S.: An Improved Data Stream Summary: The Count-Min Sketch and Its Applications. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 29–38. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Ganguly, S., Kesh, D., Saha, C.: Practical Algorithms for Tracking Database Join Sizes. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 297–309. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Gu, Y., McCallum, A., Towsley, D.: Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation. In: Proc. of Internet Measurement Conference (2005)Google Scholar
  9. 9.
    Guha, S., McGregor, A., Venkatsubramanian, S.: Streaming and Sublinear Approximation of Entropy and Information Distances. In: Proc. of SODA (2006)Google Scholar
  10. 10.
    Indyk, P.: Stable Distributions, Pseudo Random Generators, Embeddings and Data Stream Computation. In: Proc. of IEEE FOCS (2000)Google Scholar
  11. 11.
    Indyk, P., Woodruff, D.: Optimal Approximations of the Frequency Moments. In: Proc. of ACM STOC (2005)Google Scholar
  12. 12.
    Muthukrishnan, S.: Data Streams: Algorithms and Applications. Foundations and Trends in Theoretical Computer Science 1(2) (2005)Google Scholar
  13. 13.
    Nisan, N.: Pseudo-Random Generators for Space Bounded Computation. In: Proc. of ACM STOC (1990)Google Scholar
  14. 14.
    Wagner, A., Plattner, B.: Entropy based worm and anomaly detection in fast IP networks. In: 14th IEEE WET ICE, STCA Security Workshop (2005)Google Scholar
  15. 15.
    Xu, K., Zhang, Z., Bhattacharyya, S.: Profiling internet backbone traffic: behavior models and applications. SIGCOMM Comput. Commun. Rev. 35(4) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lakshminath Bhuvanagiri
    • 1
  • Sumit Ganguly
    • 1
  1. 1.Indian Institute of TechnologyKanpur

Personalised recommendations