A Comparison of Target Customers in Asian Online Game Markets: Marketing Applications of a Two-Level SOM

  • Sang-Chul Lee
  • Jae-Young Moon
  • Yung-Ho Suh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)


The purpose of our research is to identify the critical variables, to implement a new methodology for Asian online game market segmentation, and to compare target customers in Asian online game markets; Korea, Japan and China. Conclusively, the critical segmentation variables and the characteristics of target customers were different among countries. Therefore, online game companies should develop diverse marketing strategies based on characteristics of their target customers.


Customer Loyalty Virtual Community Market Segmentation Online Game Chinese Market 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackley, J.: Roundtable Reports: Better Sound Design. Gamasutra (1998),
  2. 2.
    Agarwal, R., Karahanna, E.: Time Files When You’re Having Fun: Cognitive Absorption and Beliefs About Information Technology Usage. MIS Quarterly 24(4), 665–694 (2000)CrossRefGoogle Scholar
  3. 3.
    Baron, J.: Glory and Shame: Powerful Psychology in Multiplayer Online Games. Gamasutra (1999),
  4. 4.
    Bezdek, J.C.: Some New Indexes of Cluster Validity. IEEE Transactions on Systems, Man, and Cybernetics, Part B 28(3), 301–315 (1998)CrossRefGoogle Scholar
  5. 5.
    Blatt, M., Wiseman, S., Domany, E.: Super-paramagnetic Clustering of Data. Physical Review Letters 76(8), 3251–3254 (1996)CrossRefGoogle Scholar
  6. 6.
    Boudaillier, E., Hebrail, G.: Interactive Interpretation of Hierarchical Clustering. Intelligent Data Analysis 2(3), 41 (1998)Google Scholar
  7. 7.
    Buhmann, J., KÜhnel, H.: Complexity Optimized Data Clustering by Competitive Neural Networks. Neural Computation 5(3), 75–88 (1993)CrossRefGoogle Scholar
  8. 8.
    Calinski, R.B., Harabasz, J.: A Dendrite Method for Cluster Analysis. Communication in Statistics 3, 1–27 (1974)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Calantone, R.J., Zhao, Y.S.: Joint ventures in china: a comparative study of Japanese, Korean, and U.S. partners. Journal of International Marketing 9(1), 1–23 (2000)CrossRefGoogle Scholar
  10. 10.
    Choi, D.S., Park, S.J., Kim, J.W.: A Structured Analysis Model of Customer Loyalty in Online Games. Journal of MIS Research 11(3), 1–20 (2001)Google Scholar
  11. 11.
    Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Transactions Pattern Analysis and Machine Intelligence 1, 224–227 (1979)CrossRefGoogle Scholar
  12. 12.
    Davies, F.D., Bagozzi, R.P., Warshaw, P.R.: Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Application Society Psychology 22(14), 1111–1132 (1992)CrossRefGoogle Scholar
  13. 13.
    Dunn, J.C.: A Fuzz Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hagel, J., Armstrong, A.: Net Gain: Expanding Markets through Virtual Communities. Harvard Business School Press, Boston (1997)Google Scholar
  15. 15.
    iResearch China Online Game Users Survey Report 2003, Shanghai (2003)Google Scholar
  16. 16.
    KGDI: 2003 Korean White Game Paper. KGDI, Seoul (2003)Google Scholar
  17. 17.
    KIEC: 2005 e-Business White Paper. Korea Institute for Electronic Commerce (KIEC), Seoul (2005)Google Scholar
  18. 18.
    Lewinski, J.S.: Developer’s Guide to Computer Game Design. Wordware Publishing Inc., Texas (2000)Google Scholar
  19. 19.
    Maulik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Indices. IEEE Transactions of Pattern Analysis and Machine Intelligence 24(12), 1650–1654 (2002)CrossRefGoogle Scholar
  20. 20.
    Sanchez-Crespo, D.: 1999 from a Game Development Perspective. Gamasutra (1999),
  21. 21.
    Shim, Y.S., Chung, J.W., Choi, I.C.: A Performance Comparison of Cluster Validity Indices based on K-means Algorithm. Journal of MIS Research 16(1), 127–144 (2006)Google Scholar
  22. 22.
    Spector, W.: Remodeling RPGs for the New Millennium. Gamasutra (1999),
  23. 23.
    Vesanto, J., Alhoniemi, E.: Clustering of the Self-organizing Map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)CrossRefGoogle Scholar
  24. 24.
    Webster, J., Martocchio, J.J.: Micro Computer Playfulness: Development of a Measure with Workplace Implications. MIS Quarterly 16(2), 201–226 (1992)CrossRefGoogle Scholar
  25. 25.
    Woodcock, W.: Game AI: the State of the Industry. Gamasutra (1999),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sang-Chul Lee
    • 1
  • Jae-Young Moon
    • 2
  • Yung-Ho Suh
    • 2
  1. 1.Department of Management Information SystemsKorea Christian UniversitySeoulSouth Korea
  2. 2.School of Business AdministrationKyung Hee UniversitySeoulSouth Korea

Personalised recommendations