Advertisement

A Relevance Feedback Approach for Content Based Image Retrieval Using Gaussian Mixture Models

  • Apostolos Marakakis
  • Nikolaos Galatsanos
  • Aristidis Likas
  • Andreas Stafylopatis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)

Abstract

In this paper a new relevance feedback (RF) methodology for content based image retrieval (CBIR) is presented. This methodology is based on Gaussian Mixture (GM) models for images. According to this methodology, the GM model of the query is updated in a probabilistic manner based on the GM models of the relevant images, whose relevance degree (positive or negative) is provided by the user. This methodology uses a recently proposed distance metric between probability density functions (pdfs) that can be computed in closed form for GM models. The proposed RF methodology takes advantage of the structure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.

Keywords

Gaussian Mixture Model Image Retrieval Relevance Feedback Content Base Image Retrieval Relevant Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ishikawa, Y., Subramanya, R., Faloutsos, C.: MindReader: Querying databases through multiple examples. Presented at the 24th VLDB Conf. 1998 (1998)Google Scholar
  2. 2.
    Cox, I.J., Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.: The Bayesian image retrieval system, PicHunter: Theory, implementation, and psychophysical experiments. IEEE Trans. Image Process. 9(1), 20–37 (2000)CrossRefGoogle Scholar
  3. 3.
    Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback:A power tool for interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Technol. 8(5), 644–655 (1998)CrossRefGoogle Scholar
  4. 4.
    Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1026–1038 (2002)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Wang, J.Z.: A region-based fuzzy feature matching approach to contentbased image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1252–1267 (2002)CrossRefGoogle Scholar
  6. 6.
    Guo, G.D., Jain, A.K., Ma, W.Y., Zhang, H.J.: Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. Neural Netw. 13(4), 811–820 (2002)CrossRefGoogle Scholar
  7. 7.
    Aggarwal, G., Ashwin, T.V., Ghosal, S.: An image retrieval system with automatic query modification. IEEE Trans. Multimedia 4, 201–214 (2002)CrossRefGoogle Scholar
  8. 8.
    Jing, F., Li, M., Zhang, H.J., Zhang, B.: An efficient and effective region-based image retrieval framework. IEEE Trans. Image Process. 13(5), 699–709 (2004)CrossRefGoogle Scholar
  9. 9.
    Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circuits Syst. Video Technol. 11(6), 703–715 (2001)CrossRefGoogle Scholar
  10. 10.
    Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback- Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: Current techniques, promising directions, and open issues. J. Vis. Commun. Image Represen. 10, 39–62 (1999)CrossRefGoogle Scholar
  12. 12.
    Su, Z., Zhang, H., Li, S., Ma, S.: Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE Trans. Image Process. 12(8), 924–937 (2003)CrossRefGoogle Scholar
  13. 13.
    He, X., King, O., Ma, W.Y., Li, M., Zhang, H.J.: Learning a semantic space from user’s relevance feedback for image retrieval. IEEE Trans. Circuits Syst. Video Technol. 13(1), 39–48 (2003)CrossRefGoogle Scholar
  14. 14.
    Greenspan a, H., Dvir a, G., Rubnerb, Y.: Context-dependent segmentation and matching in image databases. Computer Vision and Image Understanding 93, 86–109 (2004)CrossRefGoogle Scholar
  15. 15.
    El. Naqa, Y., Naqa, E., Yang, Y., Galatsanos, N., Wernick, M.: A Similarity Learning Approach to Content Based Image Retrieval: Application to Digital Mammography. IEEE Transactions on Medical Imaging 23(10), 1233–1244 (2004)CrossRefGoogle Scholar
  16. 16.
    Hsu, C.T., Li, C.Y.: Relevance Feedback Using Generalized Bayesian Framework With Region-Based Optimization Learning. IEEE Trans. on Image Proc. 14(10), 1617–1631 (2005)CrossRefGoogle Scholar
  17. 17.
    Qian, F., Li, M., Zhang, L., Zhang, H.J., Zhang, B.: Gaussian mixture model for relevance feedback in image retrieval. Presented at the IEEE ICME (August 2002)Google Scholar
  18. 18.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Univ. Press Inc., New York (1995)Google Scholar
  19. 19.
    McLachlan, G.M., Peel, D.: Finite Mixture Models. John Wiley & Sons, Inc., New York (2001)Google Scholar
  20. 20.
    Bimbo, A.D.: Visual Information Retrieval. Morgan Kaufmann, San Mateo (1999)Google Scholar
  21. 21.
    Sfikas, G., Constantinopoulos, C., Likas, A., Galatsanos, N.P.: An Analytic Distance Metric With Application In Image Retrieval For Gaussian Mixture Models. In: International Conference Artificial Neural Networks (2005)Google Scholar
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Apostolos Marakakis
    • 1
  • Nikolaos Galatsanos
    • 2
  • Aristidis Likas
    • 2
  • Andreas Stafylopatis
    • 1
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of Computer ScienceUniversity of IoanninaIoanninaGreece

Personalised recommendations