Human Facial Expression Recognition Using Hybrid Network of PCA and RBFN

  • Daw-Tung Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)


In this paper, we propose a hybrid architecture combining radial basis function network (RBFN) and Principal Component Analysis (PCA) re-constructure model to perform facial expression recognition from static images. The resultant framework is a two stages coarse to fine discrimination model based on local features extracted from eyes and face images by applying PCA technique . It decomposes the acquired data into a small set of characteristic features. The objective of this research is to develop a more efficient approach to classify between seven prototypic facial expressions, such as neutral, joy, anger, surprise, fear, disgust, and sadness. A constructive procedure is detailed and the system performance is evaluated on a public database ”Japanese Females Facial Expression (JAFFE)”. As anticipated, the experimental results demonstrate the potential capabilities of the proposed approach.


Facial Expression Emotion Recognition Radial Basis Function Neural Network Radial Basis Function Neural Network Facial Expression Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ioannou, S., Raouzaiou, A., Tzouvaras, V., Mailis, T., Karpouzis, K., Kollias, S.: Emotion recognition through facial expression analysis based on a neurofuzzy network. Neural Networks 18, 423–435 (2005)CrossRefGoogle Scholar
  2. 2.
    Fragopanagos, N., Taylor, J.: Emotion recognition in human-computer interaction. Neural Networks 18, 389–405 (2005)CrossRefGoogle Scholar
  3. 3.
    Yacoob, Y., Lam, H.M., Davis, L.S.: Recognizing faces showing expressions. In: International Workshop on Automatic Face and Gesture Recognition, Zurich (1995)Google Scholar
  4. 4.
    Bartlett, M., Viola, P., Sejnowski, T., Larsen, L., Hager, J., Ekman, P.: Classifying facial action. In: Mozer, M., Touretzky, D.S., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems, vol. 8. The MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Ekman, P., Friesen, W.: The facial action coding system. Consulting Psychologists Press, Palo Alto (1965)Google Scholar
  6. 6.
    Donato, G., Bartlett, M., Hager, J., Ekman, P., Sejnowski, T.: Classifying facial actions. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(10), 974–989 (1999)CrossRefGoogle Scholar
  7. 7.
    Anderson, K., McOwan, P.: A real-time automated system for the recognition of human facial expressions. IEEE Transactions on Systems, Mand, and CyberneticsXPart B 36(1), 96–105 (2006)CrossRefGoogle Scholar
  8. 8.
    Devillers, L., Vidrascu, L., Lamel, L.: Challenges in real-life emotion annotation and machine learning based detection. Neural Networks 18, 407–422 (2005)CrossRefGoogle Scholar
  9. 9.
    Chen, X.W., Huang, T.: Facial expression recognition: A clustering-based approach. Pattern Recognition Letters 24, 1295–1302 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Cottrell, G., Metcalfe, J.: EMPATH: Face, gender, and emotion recognition using holons. In: Moddy, J., Lippman, R.P., Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems, vol. 3, pp. 564–571 (1991)Google Scholar
  11. 11.
    Ma, L., Khorasani, K.: Facial expression recognition using constructive feedforward neural network. IEEE Trans. on Systems, Man, and Cybernetics – Part B: Cybernetics 34(3), 1559–1588 (2004)Google Scholar
  12. 12.
    Wang, Y., Ai, H., Wu, B., Huang, C.: Real time facial expression recognition with adaboost. In: Proceedings of the 17th International Confeence on Pattern Recognition, vol. 3, pp. 926–929 (2004)Google Scholar
  13. 13.
    Buciu, I., Pitas, I.: Application of non-negative and local non negative matrix factorization to facial expression recognition. In: Proceedings of the 17th International Confeence on Pattern Recognition, August 2004, vol. 1, pp. 288–291 (2004)Google Scholar
  14. 14.
    Shinohara, Y., Otsu, N.: Facial expression recognition using fisher weight maps. In: Proceedings of the Sixth IEEE International Confeence on Automatic Face And Gesture Recognition, pp. 499–504 (2004)Google Scholar
  15. 15.
    Abboud, B., Davoine, F., Dang, M.: Facial expression recognition and synthesis based on an appearance model. Signal Processing: Image Communication 19(8), 723–740 (2004)CrossRefGoogle Scholar
  16. 16.
    Feng, X., Pietikainen, M., Hadid, A.: Facial expression recognition with local binary patterns and linear programming. Pattern Recognition and Image Analysis 15(2), 546–548 (2005)Google Scholar
  17. 17.
    Nakayama, M., Kumakura, T.: Face identification performance using facial expressions as perturbation. In: Proceedings of the International Confeence on Artificial Neural Networks, vol. 1, pp. 557–562 (2005)Google Scholar
  18. 18.
    Amin, M., Afzulpurkar, N., Dailey, M., Esichaikul, V.: Fuzzy-C-mean determines the principle component pairs to estimate the degree of emotion from facial. In: Proceedings of the 2nd International Confeence on Fuzzy Systems and Knowledge Discovery, vol. 1, p. 484 (2005)Google Scholar
  19. 19.
    Datcu, D., Rothkrantz, L.: Facial expression recognition with relevance vector machines. In: Proceedings of the IEEE International Conference on Multimedia and Expo (July 2005)Google Scholar
  20. 20.
    Lyons, M., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(12), 1357–1362 (1999)CrossRefGoogle Scholar
  21. 21.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company, New York (1994)MATHGoogle Scholar
  22. 22.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  23. 23.
    Duric, Z., Gray, W., Heishman, R., Li, F., Rosenfeld, A., Schoelles, M., Schunn, C., Wechsler, H.: Integrating perceptual and cognitive modeling for adaptive and intelligent human - computer interaction. Proceedings of the IEEE 90(7), 1272–1289 (2002)CrossRefGoogle Scholar
  24. 24.
    Tian, Y.-L., Kanade, T., Cohn, J.: Recognitizing action units for facial expression analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(2), 97–115 (2001)CrossRefGoogle Scholar
  25. 25.
    He, L., Zhou, J., Hu, D., Zou, C., Zhao, L.: Boosted independent features for face expression recognition. In: Proceedings of the Second International Symposium on Neural Networks, May 2005, pp. 137–145 (2005)Google Scholar
  26. 26.
    Advanced Multimedia Processing Lab. Carnegie Mellon University,
  27. 27.
    Ekman, P., Friesen, W.V.: Pictures of facial affect. Human Interaction Laboratory, Univ. of California Medical CenterGoogle Scholar
  28. 28.
    Cowie, R., Douglas-Cowie, E., Cox, C.: Beyong emotion archetypes: Databases for emotion modelling using neural networks. Neural Networks 18, 371–388 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daw-Tung Lin
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Taipei UniversitySanshia, Taipei CountyTaiwan

Personalised recommendations