Computer Aided Classification of Mammographic Tissue Using Independent Component Analysis and Support Vector Machines

  • Athanasios Koutras
  • Ioanna Christoyianni
  • George Georgoulas
  • Evangelos Dermatas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)


In this paper a robust regions-of-suspicion (ROS) diagnosis system on mammograms, recognizing all types of abnormalities is presented and evaluated. A new type of statistical descriptors, based on Independent Component Analysis (ICA), derive the source regions that generate the observed ROS in mammograms. The reduced set of linear transformation coefficients, estimated from ICA after principal component analysis (PCA), compose the features vector that describes the observed regions in an effective way. The ROS are diagnosed using support-vector-machines (SVMs) with polynomial and radial basis function kernels. Taking into account the small number of training data, the PCA preprocessing step reduces the dimensionality of the features vector and consequently improves the classification accuracy of the SVM classifier. Extensive experiments using the Mammographic Image Analysis Society (MIAS) database have given high recognition accuracy above 87%.


Support Vector Machine Feature Vector Independent Component Analysis Radial Basis Function Neural Network Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, J., Moskowitz, M., Milbrath, J.: Breast cancer missed by mammography. AJR 132, 737 (1979)Google Scholar
  2. 2.
    Kalisher, L.: Factors influencing false negative rates in xero-mammography. Radiology 133, 297 (1979)Google Scholar
  3. 3.
    Tabar, L., Dean, B.P.: Teaching Atlas of Mammography, 2nd edn., Thieme, NY (1985)Google Scholar
  4. 4.
    Christoyianni, I., Dermatas, E., Kokkinakis, G.: Fast Detection of Masses in Computer- Aided Mammography. IEEE Signal Processing Magazine 17(1), 54–64 (2000)CrossRefGoogle Scholar
  5. 5.
    Sonka, M., Fitzpatrick, J.: Handbook of Medical Imaging. SPIE Press (2000)Google Scholar
  6. 6.
    Doi, K., Giger, M., Nishikawa, R., Schmidt, R. (eds.): Digital Mammography 1996. Elsevier, Amsterdam (1996)Google Scholar
  7. 7.
    Christoyianni, I., Koutras, A., Dermatas, E., Kokkinakis, G.: Computer Aided Diagnosis of Breast Cancer in Digitized Mammograms. Computerized Medical Imaging and Graphics 26(5), 309–319 (2002)CrossRefGoogle Scholar
  8. 8.
    Bazzani, A., Bevilacqua, A., Bollini, D., Brancaccio, R., Campanini, R., Lanconelli, N., Riccardi, A., Romani, D., Zamboni, G.: Automatic detection of clustered microcalcifications in digital mammograms using a SVM classifier. In: European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 195–200 (2000)Google Scholar
  9. 9.
    Wei, L., Yang, Y., Nishikawa, R.M., Jiang, Y.: A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications. IEEE Transactions on Medical Imaging, 1–10 (January 2005)Google Scholar
  10. 10.
    Christoyianni, I., Dermatas, E., Kokkinakis, G.: Neural Classification of Abnormal Tissue in Digital Mammography Using Statistical Features of the Texture. IEEE Int. Conference on Electronics, Circuits and Systems 1, 117–120 (1999)Google Scholar
  11. 11.
    Schφlkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods. In: Support Vector Learning, The MIT Press, London (1999)Google Scholar
  12. 12.
    Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data mining and Knowledge Dicovery 2, 121–167 (1998)CrossRefGoogle Scholar
  13. 13.
    Lee, T.-W.: Independent Component Analysis: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1998)MATHGoogle Scholar
  14. 14.
    Bartlett, M., Lades, M., Sejnowski, T.: Independent component representation for face recognition. In: Proc. SPIE Symposium on Electronic Imaging: Science and Technology (1998)Google Scholar
  15. 15.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Englewoo Cliffs (1999)MATHGoogle Scholar
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Athanasios Koutras
    • 1
  • Ioanna Christoyianni
    • 1
  • George Georgoulas
    • 2
  • Evangelos Dermatas
    • 1
  1. 1.WCL, Electrical & Computer Engineering Dept.University of PatrasPatras, Hellas
  2. 2.LAR, Electrical & Computer Engineering Dept.University of PatrasPatras, Hellas

Personalised recommendations