Selective Tuning: Feature Binding Through Selective Attention

  • Albert L. Rothenstein
  • John K. Tsotsos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)


We present a biologically plausible computational model for solving the visual binding problem. The binding problem appears due to the distributed nature of visual processing in the primate brain, and the gradual loss of spatial information along the processing hierarchy. The model relies on the reentrant connections so ubiquitous in the primate brain to recover spatial information, and thus allow features represented in different parts of the brain to be integrated in a unitary conscious percept. We demonstrate the ability of the Selective Tuning (ST) model of visual attention [1] to recover spatial information, and based on this propose a general solution to the binding problem. The solution is demonstrated on two classic problems: recovery of form from motion and binding of shape and color. We also demonstrate how the method is able to handle difficult situations such as occlusions and transparency. The model is discussed in relation to recent results regarding the time course and processing sequence for form-from-motion in the primate visual system.


Spatial Information Object Recognition Selective Attention Feature Binding Illusory Conjunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y.H., Davis, N., Nuflo, F.: Modeling visual-attention via selective tuning. Artif. Intell. 78(1-2), 507–545 (1995)CrossRefGoogle Scholar
  2. 2.
    Roskies, A.L.: The binding problem. Neuron 24(1), 7–9 (1999)CrossRefGoogle Scholar
  3. 3.
    Rosenblatt, F.: Principles of Neurodynamics: Perceptions and the Theory of Brain Mechanisms. Spartan Books (1961)Google Scholar
  4. 4.
    Treisman, A., Schmidt, H.: Illusory conjunctions in the perception of objects. Cognit. Psychol. 14(1), 107–141 (1982)CrossRefGoogle Scholar
  5. 5.
    Barlow, H.B.: Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1(4), 371–394 (1972)CrossRefGoogle Scholar
  6. 6.
    Ghose, G.M., Maunsell, J.: Specialized representations in visual cortex: a role for binding? Neuron 24(1), 79–85 (1999)CrossRefGoogle Scholar
  7. 7.
    von der Malsburg, C.: The what and why of binding: the modeler’s perspective. Neuron 24(1), 95–104 (1999)CrossRefGoogle Scholar
  8. 8.
    Rothenstein, A.L., Tsotsos, J.K.: Attention links sensing to recognition. Image and Vision Computing (2006) (in press) doi:10.1016/j.imavis.2005.08.011Google Scholar
  9. 9.
    Milner, P.: A model for visual shape recognition. Psychol. Rev. 81, 521–535 (1974)CrossRefGoogle Scholar
  10. 10.
    von der Malsburg, C.: Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chem. 89, 703–710 (1985)Google Scholar
  11. 11.
    Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999)CrossRefGoogle Scholar
  12. 12.
    Treisman, A.M., Gelade, G.: Feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)CrossRefGoogle Scholar
  13. 13.
    Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J.C., Pomplun, M., Simine, E., Zhou, K.: Attending to visual motion. Comput. Vis. Image Und. 100(1-2), 3–40 (2005)CrossRefGoogle Scholar
  14. 14.
    Cutzu, F., Tsotsos, J.K.: The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Research 43(2), 205–219 (2003)CrossRefGoogle Scholar
  15. 15.
    Taraborelli, D.: Feature binding and object perception. Does object awareness require feature conjunction? In: 10th Annual Meeting of the European Society for Philosophy and Psychology - ESPP 2002, Lyon (2002)Google Scholar
  16. 16.
    Robertson, L.: Space, Objects, Brains and Minds. In: Essays in Cognitive Psychology. Psychology Press, San Diego (2004)Google Scholar
  17. 17.
    Foldiak, P., Young, M.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 895–898. MIT Press, Cambridge (1995)Google Scholar
  18. 18.
    Fukushima, K., Imagawa, T., Ashida, E.: Character recognition with selective attention. In: International Joint Conference on Neural Networks, vol. 1, pp. 593–598. Seattle (1991)Google Scholar
  19. 19.
    Hummel, J.E., Stankiewicz, B.J.: An architecture for rapid, hierarchical structural description. In: Inui, T., McClelland, J. (eds.) Attention and Performance XVI: Information Integration in Perception and Communication, pp. 93–121. MIT Press, Cambridge (1996)Google Scholar
  20. 20.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)CrossRefGoogle Scholar
  21. 21.
    Schoenfeld, M.A., Woldorff, M., Duzel, E., Scheich, H., Heinze, H.J., Mangun, G.R.: Form-from-motion: MEG evidence for time course and processing sequence meg evidence for time course and processing sequence. Journal of Cognitive Neuroscience 15(2), 157–172 (2003)CrossRefGoogle Scholar
  22. 22.
    Bullier, J.: Integrated model of visual processing. Brain Research Reviews 36(2-3), 96–107 (2001)CrossRefGoogle Scholar
  23. 23.
    Tsunoda, K., Yamane, Y., Nishizaki, M., Tanifuji, M.: Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nature Neuroscience 4, 832–838 (2001)CrossRefGoogle Scholar
  24. 24.
    Grill-Spector, K., Kanwisher, N.: Visual recognition: as soon as you see it, you know what it is. Psychological Science 16(2), 152–160 (2005)CrossRefGoogle Scholar
  25. 25.
    Wolfe, J.M.: Moving towards solutions to some enduring controversies in visual search. Trends in Cognitive Sciences 7(2), 70–76 (2003)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Haynes, J.D., Tregellas, J., Rees, G.: Attentional integration between anatomically distinct stimulus representations in early visual cortex. Proc. Natl. Acad. Sci. USA 102(41), 14925–14930 (2005)CrossRefGoogle Scholar
  27. 27.
    Pollen, D.A.: Explicit neural representations, recursive neural networks and conscious visual perception. Cerebral Cortex 13(8), 807–814 (2003)CrossRefGoogle Scholar
  28. 28.
    Keselman, Y., Dickinson, S.J.: Generic model abstraction from examples. IEEE T. Pattern Anal. 27(7), 1141–1156 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Albert L. Rothenstein
    • 1
  • John K. Tsotsos
    • 1
  1. 1.Dept. of Computer Science & Engineering and Centre for Vision ResearchYork UniversityTorontoCanada

Personalised recommendations