Feature Conjunctions in Visual Search

  • Antonio J. Rodríguez-Sánchez
  • Evgueni Simine
  • John K. Tsotsos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)


Selective Tuning (ST) [1] presents a framework for modeling attention and in this paper we show how it performs in visual search tasks. Two types of tasks are presented, a motion search task and an object search task. Both tasks are successfully tested with different feature and conjunction visual searches.


Visual Search Search Task Feature Search Visual Search Task Conjunction Search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsotsos, J., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial Intelligence 78, 507–545 (1995)CrossRefGoogle Scholar
  2. 2.
    Pashler, H. (ed.): Attention. University College London Press, London (1998)Google Scholar
  3. 3.
    Itti, L., Rees, G., Tsotsos, J.: Neurobiology of Attention. Elsevier Science, Amsterdam (2005)Google Scholar
  4. 4.
    Treisman, A., Gelade, G.: A feature integration theory of attention. Cognitive Psychology 12, 97–136 (1980)CrossRefGoogle Scholar
  5. 5.
    Koch, C., Ullman, S.: Shifts in selective visual attention towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)Google Scholar
  6. 6.
    Helmholtz, H.: Teatrise on physiological optics (southall, trans. from 3d german edition, 1909). The Optical Society of America (1924)Google Scholar
  7. 7.
    Tsotsos, J., Liu, Y., Martinez-Trujillo, J., Pomplun, M., Simine, E., Zhou, K.: Attending to motion. Computer Vision and Image Understanding 100(1-2), 3–40 (2005)CrossRefGoogle Scholar
  8. 8.
    Thornton, T., Gilden, D.: Attentional limitations in the sensing of motion direction. Cognitive Psychology 43, 23–52 (2001)CrossRefGoogle Scholar
  9. 9.
    Hillstrom, A., Mantis, S.: Visual motion and attentional capture. Perception and Psychophysics 55(4), 344–411 (1994)CrossRefGoogle Scholar
  10. 10.
    Wolfe, J.: Visual Search. In: Attention, University College London Press, London (1998)Google Scholar
  11. 11.
    Pasupathy, A., Connor, C.: Shape represantion in area v4: Position-specific tuning for boundary conformation. Journal of Neurophysiology 86, 2505–2519 (2001)Google Scholar
  12. 12.
    Marcelja, S.: Mathematical description of the responses of simple cortical cells. Journal of Optical Society of America 70, 1297–1300 (1980)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)CrossRefGoogle Scholar
  14. 14.
    Felleman, D., Essen, D.V.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1 (1991)Google Scholar
  15. 15.
    Rolls, E., Deco, G.: Computational Neuroscience of Vision, Oxford, New York (2002)Google Scholar
  16. 16.
    Itti, L., Koch, C., Niebur, E.: A model for saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1254–1259 (1998)Google Scholar
  17. 17.
    Duncan, J., Humphreys, G.: Visual search and stimulus similarity. Psychological Review 96, 433–458 (1989)CrossRefGoogle Scholar
  18. 18.
    Nagy, A., Sanchez, R.: Critical color differences determined with a visual search task. Journal of the Optical Society of America A 7, 1209–1217 (1990)CrossRefGoogle Scholar
  19. 19.
    Bichot, N., Schall, J.: Saccade target selection in macaque during feature and conjunction visual search. Visual Neuroscience 16, 91–98 (1999)CrossRefGoogle Scholar
  20. 20.
    Wolfe, J., Cave, K., Franzel, S.: Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance 15, 419–433 (1989)CrossRefGoogle Scholar
  21. 21.
    Egeth, H., Dagenbach, D.: Parallel versus serial processing in visual search: Further evidence from subadditive effects of visual quality. Journal of Experimental Psychology: Human Perception and Performance 17, 551–560 (1991)CrossRefGoogle Scholar
  22. 22.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. SANature Neuroscience 2, 1019–1025 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antonio J. Rodríguez-Sánchez
    • 1
  • Evgueni Simine
    • 1
  • John K. Tsotsos
    • 1
  1. 1.Dept. of Computer Science & Engineering, and Centre for Vision ResearchYork UniversityTorontoCanada

Personalised recommendations