Towards a Control Theory of Attention

  • John G. Taylor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)


An engineering control approach to attention is developed here, based on the original CODAM (COrollary Discharge of Attention Movement) model. Support for the existence in the brain of the various modules thereby introduced is presented, especially those components involving an observer. The manner in which the model can be extended to executive functions involving the prefrontal cortices is then outlined, Finally the manner in which conscious experience may be supported by the architecture is described.


Executive Function Attention Control Attentional Blink Efference Copy Corollary Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, J.G.: Attentional Movement: the control basis for Consciousness. Soc. Neurosci. Abstr. 26, 2231, 839.3 (2000)Google Scholar
  2. 2.
    Taylor, J.G.: Paying Attention to Consciousness. Progress in Neurobiology 71, 305–335 (2003)CrossRefGoogle Scholar
  3. 3.
    Fragopanagos, N., Kockelkoren, S., Taylor, J.G.: Modelling the Attentional Blink Cogn Brain Research (2005) (in press)Google Scholar
  4. 4.
    Taylor, J.G.: Race for Consciousness. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Sergent, C., Baillet, S., Dehaene, S.: Timing of the brain events underlying access to consciousness during the attentional blink. Nat Neurosci. (September 2005)Google Scholar
  6. 6.
    Phillips, C.L., Harbour, R.D.: Feedback Control Systems. Prentice Hall, New Jersey (2000)MATHGoogle Scholar
  7. 7.
    Desimone, Duncan: Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193–222 (1995)CrossRefGoogle Scholar
  8. 8.
    Taylor, J.G.: From Matter to Consciousness: Towards a Final Solution? Physics of Life Reviews 2, 1–44 (2005)CrossRefGoogle Scholar
  9. 9.
    Taylor, J.G., Fragopanagos, N.: The interaction of attention and emotion. Neural Networks 18(4) (2005) (in press)Google Scholar
  10. 10.
    Barto, A.: Adaptive Critics and the basal ganglia. In: Houk, J.C., Davis, J., Beiser, D.C. (eds.) Models of Information Processing n the Basal Ganglia. MIT Press, Cambridge (1995)Google Scholar
  11. 11.
    Houde, O., Tzourio-Mazayer, N.: Neural foundations of logical and mathematical cognition. Nat. Rev. Neuroscience 4, 507–514 (2003)CrossRefGoogle Scholar
  12. 12.
    Kasderidis, S., Taylor, J. G.: Attentional Agents and Robot Control. International Journal of Knowledge-based & Intelligent Systems 8, 69–89 (2004)Google Scholar
  13. 13.
    Kasderidis, S., Taylor, J.G.: Combining Attention and Value Maps. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 79–84. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Taylor, N., Taylor, J.G.: Analysis of Recurrent Cortico-Basal-Ganglia-Thalamic Loops for Working Memory. Biological Cybernetics 82, 415–432 (2000)MATHCrossRefGoogle Scholar
  15. 15.
    Monchi, O., Taylor, J.G., Dagher, A.: A neural model of working memory processes in normal subjects, Parkinson’s disease and schizophrenia for fMRI design and predictions. Neural Networks 13(8-9), 963–973 (2000)CrossRefGoogle Scholar
  16. 16.
    Monchi, O., Petrides, M., Doyon, J., Postuma, R.B., Worsley, K., Dagher, A.: Neural Bases of Set Shifting Deficits in Parkinson’s Disease. Journal of Neuroscience 24, 702–710 (2004)CrossRefGoogle Scholar
  17. 17.
    Baddeley, A.: Working Memory. Oxford University Press, Oxford (1986)Google Scholar
  18. 18.
    Lepstein, J., Griffin, I.C., Devlin, J.T., Nobre, A.C.: Directing spatial attention in mental representations: Interactions between attention orienting and working-memory load. NeuroImage 26, 733–743 (2005)CrossRefGoogle Scholar
  19. 19.
    Yoon, J.H., Curtis, C.E., D’Esposito, M.D.: Differential effects if distraction during working memory on delay-period activity in the prefrontal cortex and the visual association cortex. NeuroImage 29, 1117–1126 (2006)CrossRefGoogle Scholar
  20. 20.
    Xu, Y., Chun, M.M.: Dissociable neural mechanisms supporting visual shot-term memory for objects. Nature 440, 91–95 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • John G. Taylor
    • 1
  1. 1.Dept. of MathematicsKing’s CollegeStrand, LondonUK

Personalised recommendations