The Sphere-Concatenate Method for Gaussian Process Canonical Correlation Analysis

  • Pei Ling Lai
  • Gayle Leen
  • Colin Fyfe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)


We have recently developed several ways of using Gaussian Processes to perform Canonical Correlation Analysis. We review several of these methods, introduce a new way to perform Canonical Correlation Analysis with Gaussian Processes which involves sphering each data stream separately with probabilistic principal component analysis (PCA), concatenating the sphered data and re-performing probabilistic PCA. We also investigate the effect of sparsifying this last method. We perform a comparative study of these methods.


Data Stream Gaussian Process Canonical Correlation Analysis Kernel Principal Component Analysis Neural Network Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bach, F.R., Jordan, M.I.: A probabilistic interpretation of canonical correlation analysis. Technical Report 688, Dept. of Statistics, University of California (2005)Google Scholar
  2. 2.
    Fyfe, C., Leen, G.: Stochastic processes for canonical correlation analysis. In: 14th European Symposium on Artificial Neural Networks (2006)Google Scholar
  3. 3.
    Gou, Z.K., Fyfe, C.: A canonical correlation neural network for multicollinearity and functional data. Neural Networks (2003)Google Scholar
  4. 4.
    Lai, P.L., Fyfe, C.: A neural network implementation of canonical correlation analysis. Neural Networks 12(10), 1391–1397 (1999)CrossRefGoogle Scholar
  5. 5.
    Lai, P.L., Leen, G., Fyfe, C.: A comparison of stochastic processes and artificial neural networks for canonical correlation analysis. In: International Joint Conference on Neural Networks (2006)Google Scholar
  6. 6.
    MacKay, D.J.C.: Introduction to gaussian processes. Technical report, University of Cambridge (1997),
  7. 7.
    Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979)MATHGoogle Scholar
  8. 8.
    Rasmussen, C.E.: Advanced Lectures on Machine Learning. In: Gaussian Processes in Machine Learning, pp. 63–71 (2003)Google Scholar
  9. 9.
    Scholkopf, B., Smola, A., Muller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)CrossRefGoogle Scholar
  10. 10.
    Tipping, M.: Sparse kernel principal component analysis. In: NIPS (2003)Google Scholar
  11. 11.
    Williams, C.K.I.: Prediction with gaussian processes: from linear regression to linear prediction and beyond. Technical report, Aston University (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pei Ling Lai
    • 1
  • Gayle Leen
    • 2
  • Colin Fyfe
    • 2
  1. 1.Southern Taiwan Institute of TechnologyTaiwan
  2. 2.Applied Computational Intelligence Research UnitThe University of PaisleyScotland

Personalised recommendations