Advertisement

Missing Value Estimation for DNA Microarrays with Mutliresolution Schemes

  • Dimitrios Vogiatzis
  • Nicolas Tsapatsoulis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)

Abstract

The expression pattern of a gene across time can be considered as a signal; a microarray experiment is collection of thousands of such signals where due to instrument failure, human errors and technology limitations, values at some time instances are usually missing. Furthermore, in some microarray experiments the gene signals are not sampled at regular time intervals, which renders the direct use of well established frequency-temporal signal analysis approaches such as the wavelet transform problematic. In this work we evaluate a novel multiresolution method, known as the lifting transform to estimate missing values in time series microarray data. Though the lifting transform has been developed to deal with irregularly spaced data its usefulness for the estimation of missing values in microarray data has not been examined in detail yet. In this framework we evaluate the lifting transform against the wavelet transform, a moving average method and a zero imputation on 5 data sets from the cell cycle and the sporulation of the saccharomyces cerevisiae.

Keywords

Microarray Experiment Discrete Wavelet Multiresolution Analysis Wavelet Method Lift Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramovich, F., Bailey, T.C., Sapatinas, T.: Wavelet Analysis and its statistical applications. The Statistician 49, 1–29 (2000)Google Scholar
  2. 2.
    Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: Asymptopia? J. R. Statist. Soc. B. 57(2), 301–337 (1995)MATHMathSciNetGoogle Scholar
  3. 3.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alizadeh, A.A., et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)CrossRefGoogle Scholar
  5. 5.
    Butte, A.J., et al.: Determining significant fold differences in gene expression analysis. In: Pac. Symp. Biocomput., pp. 6–17 (2001)Google Scholar
  6. 6.
    Friedland, S., Niknejad, A., Chihara, L.: A simultaneous reconstruction of missing data in DNA microarrays. Institute for Mathematics and its Applications Preprint Series (1948) (2003)Google Scholar
  7. 7.
    Jansen, M., Nason, G.P., Silverman, B.W.: Multivariate nonparametrix regression using lifting. Technical report, Department of Mathematics, University of Bristol, UK (2004)Google Scholar
  8. 8.
    Kim, H., Golub, G.H., Park, H.: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2), 187–198 (2005)CrossRefGoogle Scholar
  9. 9.
    Li, T., Li, Q., Zhu, S., Ogihara, M.: A survey on wavelet applications in data mining. SIGKDD Explorations 4(2), 49–68 (2003)CrossRefGoogle Scholar
  10. 10.
    Liò, P.: Wavelets in bioinformatics and computational biology: state of art and perspectives. Bioinformatics 19(1), 2–9 (2003)CrossRefGoogle Scholar
  11. 11.
    Little, R.J.A., Rubin, D.B.: Statistical analysis with missing data. Wiley, New York (1987)MATHGoogle Scholar
  12. 12.
    Loh, W., Vanichsetakul, N.: Tree-structured classification via generalized discriminant analysis. Journal of American Statistics Association 83, 7157251 (1988)MathSciNetGoogle Scholar
  13. 13.
    Macgregor, P.F., Squire, J.A.: Application of microarrays to the analysis of gene expression in cancer. Clinical Chemistry 48(8), 1170–1177 (2002)Google Scholar
  14. 14.
    Mallat, S.: A theory of multiresolution signal decomposition: The wavelet model. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)MATHCrossRefGoogle Scholar
  15. 15.
    Nunes, M.A., Nason, G.P.: Stopping times in adaptive lifting. Technical Report 05:15 (2004)Google Scholar
  16. 16.
    Nunes, M.A., Popa, M.I., Nason, G.P.: Adaptive lifting for nonparametric regression. Technical Report 04:19, Statistics Group, Department of Mathematics, University of Bristol, UK (2004)Google Scholar
  17. 17.
    Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., Ishii, S.: A bayesian missing value estimation method for gene expression profile data. Bioinformatics 19, 2088–2096 (2003)CrossRefGoogle Scholar
  18. 18.
    Popa, M.I., Nason, G.P.: Improving Prediction of Hydrophobic Segments along a Transmembrane Protein Sequence using Adaptive Multiscale Lifting. Technical Report 04:19, Statistics Group, Department of Mathematics, University of Bristol, UK (2005)Google Scholar
  19. 19.
    Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O., Herskowitz, I.: The transcriptional program of sporulation in budding yeastGoogle Scholar
  20. 20.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Molecular Biology of the Cell 9(12), 3273–3297 (1998)Google Scholar
  21. 21.
    Tokuyasu, T.A., Albertson, D., Pinkel, D., Jain, A.: Wavelet transforms for the analysis of microarray experiments. In: IEEE Computer Society Bioinformatics Conference (CSB 2003), p. 429 (2003)Google Scholar
  22. 22.
    Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarraysGoogle Scholar
  23. 23.
    Tuikkala, J., Elo, L., Nevalainen, O.S., Aitkallio, T.: Improving missing value estimation in microarray data with gene ontology. Bioinformatics 22(5), 566–572Google Scholar
  24. 24.
    Wilkinson, G.N.: Estimation of missing values for the analysis of incomplete data. Biometrics 14, 257–286 (1958)MATHCrossRefGoogle Scholar
  25. 25.
    Yates, Y.: The analysis of replicated experiments when the field results are incomplete. Emp. J. Exp. Agric 1, 129–142 (1933)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dimitrios Vogiatzis
    • 1
  • Nicolas Tsapatsoulis
    • 2
  1. 1.Department of Computer ScienceUniversity of CyprusCyprus
  2. 2.Department of Telecommunications Science, and Technology University of PeloponneseGreece

Personalised recommendations