Non-destructive Testing for Assessing Structures by Using Soft-Computing

  • Luis Eduardo Mujica
  • Josep Vehí
  • José Rodellar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)


A hybrid system which combines Self Organizing Maps and Case Based Reasoning is presented and apply to Structural Assessment. Self Organizing Maps are trained as a classification tool in order to organize the old cases in memory with the purpose of speeding up the Case Based Reasoning process. Three real structures have been used: An aluminium beam, a pipe section and a long pipe.


Real Structure Structural Assessment Reversible Defect Pipe Section Damage Case 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CG01]
    Chou, J.-H., Ghaboussi, J.: Genetic algorithm in structural damage detection. Computers & Structures 79(14), 1335–1353 (2001)CrossRefGoogle Scholar
  2. [HNR00]
    Huo, Z., Noori, M., Amand, R.S.: Wavelet-based approach for structural damage detection. Journal of Engineering Mechanics 126(7), 677–683 (2000)CrossRefGoogle Scholar
  3. [Koh90]
    Kohonen, T.: The self-organizing map. Proceeding in IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  4. [LM96]
    Lehane, M.S., Moore, C.J.: Applying case-based reasoning in bridge design. In: Kumar, B. (ed.) Information Processing in Civil and Structural Engineering, pp. 1–5. Inverleith Spottiswoode (1996)Google Scholar
  5. [MVRK05]
    Mujica, L.E., Vehí, J., Rodellar, J., Kolakowski, P.: A hybrid approach of knowledge-based reasoning for structural assessment. Smart Materials and Structures 14, 1554–1562 (2005)CrossRefGoogle Scholar
  6. [NY93]
    Natke, H.G., Yao, J.T.P.: Detection and location of damage causing non-linear system behaviour. In: Natke, H.G., Tomlinson, G.R., Yao, J.T.P. (eds.) Proc. of the Internat. Workshop on Safety Evaluation Based on Identification Approaches Related to Time Variant and Nonlinear Structures, Lambrecht, Vieweg, Braunschweig (1993)Google Scholar
  7. [PK99]
    Pittner, S., Kamarthi, S.V.: Feature extraction from wavelet coefficients for pattern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(1), 83–88 (1999)CrossRefGoogle Scholar
  8. [SWF02]
    Sohn, H., Worden, K., Farrar, C.R.: Statistical damage classification under changing environmental and operational conditions. Journal of Intelligent Material Systems and Structures 13(9), 561–574 (2002)CrossRefGoogle Scholar
  9. [YYJ03]
    Yam, L.H., Yana, Y.J., Jiang, J.S.: Vibration-based damage detection for composite structures using wavelet transform and neural network. Composite Structures 60(4), 403–412 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luis Eduardo Mujica
    • 1
  • Josep Vehí
    • 1
  • José Rodellar
    • 2
  1. 1.Department of Electronics, Computer Science and Automatic ControlUniversity of Girona (UdG)GironaSpain
  2. 2.Department of Applied Mathematic IIITechnical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations