Advertisement

The Core Method: Connectionist Model Generation

  • Sebastian Bader
  • Steffen Hölldobler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)

Abstract

Knowledge based artificial networks networks have been applied quite successfully to propositional knowledge representation and reasoning tasks. However, as soon as these tasks are extended to structured objects and structure-sensitive processes it is not obvious at all how neural symbolic systems should look like such that they are truly connectionist and allow for a declarative reading at the same time. The core method aims at such an integration. It is a method for connectionist model generation using recurrent networks with feed-forward core. After an introduction to the core method, this paper will focus on possible connectionist representations of structured objects and their use in structure-sensitive reasoning tasks.

Keywords

Logic Program Structure Object Piecewise Constant Function Recurrent Network Ground Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, R., Diederich, J., Tickle, A.: A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge–Based Systems 8(6) (1995)Google Scholar
  2. 2.
    Bader, S., Hitzler, P., Witzel, A.: Integrating first-order logic programs and connectionist systems — a constructive approach. In: Proceedings of the IJCAI 2005 Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2005, Edinburgh, UK (2005)Google Scholar
  3. 3.
    Ballard, D.H.: Parallel logic inference and energy minimization. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 203–208 (1986)Google Scholar
  4. 4.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)Google Scholar
  5. 5.
    d’Avila Garcez, A.S., Broda, K., Gabbay, D.M.: Neural-Symbolic Learning Systems: Foundations and Applications. Springer, Heidelberg (2002)MATHGoogle Scholar
  6. 6.
    d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: A connectionist inductive learning system for modal logic programming. In: Proceedings of the IEEE International Conference on Neural Information Processing ICONIP 2002, Singapore (2002)Google Scholar
  7. 7.
    d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: Neural-symbolic intuitionistic reasoning. In: Design and Application of Hybrid Intelligent Systems, pp. 399–408. IOS Press, Amsterdam (2003)Google Scholar
  8. 8.
    d’Avila Garcez, A.S., Zaverucha, G., de Carvalho, L.A.V.: Logic programming and inductive learning in artificial neural networks. In: Herrmann, Ch., Reine, F., Strohmaier, A. (eds.) Knowledge Representation in Neural Networks, Berlin, pp. 33–46. Logos Verlag (1997)Google Scholar
  9. 9.
    Elman, J.L.: Structured representations and connectionist models. In: Proceedings of the Annual Conference of the Cognitive Science Society, pp. 17–25 (1989)Google Scholar
  10. 10.
    Fitting, M.: Metric methods – three examples and a theorem. Journal of Logic Programming, 113–127 (1994)Google Scholar
  11. 11.
    Fritzke, B.: Vektorbasierte Neuronale Netze. Shaker Verlag (1998)Google Scholar
  12. 12.
    Funahashi, K.-I.: On the approximate realization of continuous mappings by neural networks. Neural Networks 2, 183–192 (1989)CrossRefGoogle Scholar
  13. 13.
    Hitzler, P., Hölldobler, S., Seda, A.K.: Logic programs and connectionist networks. Journal of Applied Logic 2(3), 245–272 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hölldobler, S., Kalinke, Y.: Towards a massively parallel computational model for logic programming. In: Proceedings of the ECAI 1994 Workshop on Combining Symbolic and Connectionist Processing (ECCAI), pp. 68–77 (1994)Google Scholar
  15. 15.
    Hölldobler, S., Kalinke, Y., Störr, H.-P.: Approximating the semantics of logic programs by recurrent neural networks. Applied Intelligence 11, 45–59 (1999)CrossRefGoogle Scholar
  16. 16.
    Hölldobler, S., Kurfess, F.: CHCL – A connectionist inference system. In: Fronhöfer, B., Wrightson, G. (eds.) Dagstuhl Seminar 1990. LNCS (LNAI), vol. 590, pp. 318–342. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)CrossRefGoogle Scholar
  18. 18.
    Kalinke, Y.: Ein massiv paralleles Berechnungsmodell für normale logische Programme. Master’s thesis, TU Dresden, Fakultät Informatik (1994) (in German)Google Scholar
  19. 19.
    Lange, T.E., Dyer, M.G.: High-level inferencing in a connectionist network. Connection Science 1, 181–217 (1989)CrossRefGoogle Scholar
  20. 20.
    Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1993)MATHGoogle Scholar
  21. 21.
    McCarthy, J.: Epistemological challenges for connectionism. Behavioural and Brain Sciences 11, 44 (1988)CrossRefGoogle Scholar
  22. 22.
    McCulloch, W.S., Pitts, W.: A logical calculus and the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pinkas, G.: Symmetric neural networks and logic satisfiability. Neural Computation 3, 282–291 (1991)CrossRefGoogle Scholar
  24. 24.
    Plate, T.A.: Holographic reduced networks. In: Giles, C.L., Hanson, S.J., Cowan, J.D. (eds.) Advances in Neural Information Processing Systems, vol. 5, Morgan Kaufmann, San Francisco (1992)Google Scholar
  25. 25.
    Pollack, J.B.: Recursive distributed representations. Artificial Intelligence 46, 77–105 (1990)CrossRefGoogle Scholar
  26. 26.
    Seda, A.K., Lane, M.: Some aspects of the integration of connectionist and logic-based systems. In: Proceedings of the Third International Conference on Information, pp. 297–300. International Information Institute, Tokyo (2004)Google Scholar
  27. 27.
    Shastri, L., Ajjanagadde, V.: From associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioural and Brain Sciences 16(3), 417–494 (1993)CrossRefGoogle Scholar
  28. 28.
    Smolensky, P.: On variable binding and the representation of symbolic structures in connectionist systems. Technical Report CU-CS-355-87, Department of Computer Science & Institute of Cognitive Science, University of Colorado, Boulder, CO 80309-0430 (1987)Google Scholar
  29. 29.
    Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge–based neural networks. Machine Learning 131, 71–101 (1993)Google Scholar
  30. 30.
    Willard, S.: General Topology. Addison Wesley, Reading (1970)MATHGoogle Scholar
  31. 31.
    Witzel, A.: Integrating first-order logic programs and connectionist networks. Project Thesis, Technische Universität Dresden, Informatik (2005)Google Scholar
  32. 32.
    Witzel, A.: Neural-symbolic integration – constructive approaches. Master’s thesis, Technische Universit”at Dresden, Informatik (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sebastian Bader
    • 1
  • Steffen Hölldobler
    • 1
  1. 1.International Center for Computational LogicTechnische Universität DresdenDresdenGermany

Personalised recommendations