Dual Adaptive ANN Controllers Based on Wiener Models for Controlling Stable Nonlinear Systems

  • D. Sbarbaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4131)


This paper presents two nonlinear adaptive predictive algorithms based on Artificial Neural Network (ANN) and a Wiener structure for controlling asymptotically stable nonlinear plants. The first algorithm is based on the minimization of a cost function taking into account the future tracking error and the Certainty Equivalence (CE) principle, under which the estimated parameters are used as if they were the true parameters. In order to improve the performance of the adaptive algorithm, we propose to use a cost function, considering not only the future tracking error, but also the effect of the control signal over the estimated parameters. A simulated chemical reactor example illustrates the performance and feasibility of both approaches.


Model Predictive Control Posterior Density Predictive Controller Parameter Estimation Algorithm Wiener Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Special issue on neural network feedback control. Automatica 37(8) (2001)Google Scholar
  2. 2.
    Fabri, S., Kadirkamanathan, V.: Dual Adaptive Control of Nonlinear Stochastic Systems using Neural Networks. Automatica 34(2), 245–253 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Sbarbaro, D., Filatov, N., Unbehauen, H.: Adaptive dual controller for a class of nonlinear systems. In: Preprints of the 1998 IFAC Workshop on Adaptive Systems in Control and Signal Processing, Scotland, August 1998, pp. 28–33 (1998)Google Scholar
  4. 4.
    Filatov, N., Hunbeauen, H.: Adaptive dual control. Springer, New York (2004)MATHGoogle Scholar
  5. 5.
    Chikkula, Y., Lee, J.H., Ogunnaike, B.A.: Robust model predictive control of nonlinear systems using input-output models. In: Proceedings of the ACC, Seattle, pp. 2205–2209 (1995)Google Scholar
  6. 6.
    Sentoni, G., Agamennoni, O., Desages, A., Romagnoli, J.: Approximate models for nonlinear process control. AIChE Journal 42(8), 2240–2250 (1996)CrossRefGoogle Scholar
  7. 7.
    Maner, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. Automatica 32(9), 1285–1301 (1996)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Sentoni, G., Biegler, L., Guiver, J., Zaho, H.: State Space Nonlinear modeling: Identification and Universality. AIChE Journal 44(10), 2229–2239 (1998)CrossRefGoogle Scholar
  9. 9.
    Kulcsar, C., Pronzato, L., Walter, E.: Dual Control of linearly parametrised models via prediction of posterior densities. European Journal of Control 2, 135–143 (1996)MATHGoogle Scholar
  10. 10.
    Zheng, Q., Zafiriou, E.: Nonlinear Identification for control using volterra-Laguerre expansion. In: Proceedings of the ACC, Seattle, pp. 2195–2199 (1995)Google Scholar
  11. 11.
    deVries, B., Principe, J.: The gamma model - a new neural model for temporal processing. Neural Networks 5(4), 565–576 (1992)CrossRefGoogle Scholar
  12. 12.
    Schetzen, M.: The Volterra and Wiener theory of non-linear systems. Wiley, New York (1980)Google Scholar
  13. 13.
    Filatov, N., Hunbeauen, H.: Survey of Adaptive dual control methods. IEE Proc.-Control Theory Appl. 147(1), 118–128 (2000)CrossRefGoogle Scholar
  14. 14.
    Dumont, G., Fu, Y.: Non-linear adaptive control via laguerre expansion of volterra kernels. International Journal of Adaptive Control and Signal Processing 7, 367–382 (1993)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • D. Sbarbaro
    • 1
  1. 1.Department of Electrical EngineeringUniversidad de ConcepciónChile

Personalised recommendations