Accelerating Event Based Simulation for Multi-synapse Spiking Neural Networks

  • Michiel D’Haene
  • Benjamin Schrauwen
  • Dirk Stroobandt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4131)


The simulation of large spiking neural networks (SNN) is still a very time consuming task. Therefore most simulations are limited to rather unrealistic small or medium sized networks (typically hundreds of neurons). In this paper, some methods for the fast simulation of large SNN are discussed. Our results equally amongst others show that event based simulation is an efficient way of simulating SNN, although not all neuron models are suited for an event based approach. We compare some models and discuss several techniques for accelerating the simulation of more complex models. Finally we present an algorithm that is able to handle multi-synapse models efficiently.


Neuron Model Time Stamp Lookup Table Spike Neural Network Active Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brette, R.: Exact simulation of integrate-and-fire models with synaptic conductances (2005) (Submitted)Google Scholar
  2. 2.
    Carrillo, R., Ros, E., Ortigosa, E., Barbour, B., Agis, R.: Lookup table powered neural event-driven simulator. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 168–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    D’Haene, M.: Parallelle event-gebaseerde simulatietechnieken en hun toepassing binnen gepulste neurale netwerken. Technical report, Universiteit Gent (2005)Google Scholar
  4. 4.
    Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  5. 5.
    Grassmann, C., Anlauf, J.: Distributed, event driven simulation of spiking neural networks. In: Proceedings of the International ICSC /IFAC Symposium on Neural Computation, pp. 100–105 (1998)Google Scholar
  6. 6.
    Graves, A., Eck, D., Beringer, N., Schmidhuber, J.: Biologically plausible speech recognition with LSTM neural nets. In: Proceedings of Bio-ADIT, pp. 127–136 (2004)Google Scholar
  7. 7.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol (London) 117, 500–544 (1952)Google Scholar
  8. 8.
    Lobb, C., Chao, Z., Fujimoto, R., Potter, S.: Parallel event-driven neural network simulation using the Hodgkin-Huxley neuron model. In: Proceedings of the 19th Workshop on Principles of Advanced and Distributed Simulation (2005)Google Scholar
  9. 9.
    Maass, W.: Lower bounds for the computational power of networks of spiking neurons. Neural Computation 8(1), 1–40 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Maass, W.: Computation with spiking neurons. In: The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge (2001)Google Scholar
  11. 11.
    Makino, T.: A discrete-event neural network simulator for general neural models. Neural Computing & Applications 11, 210–223 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    Rochel, O., Martinez, D.: An event-driven framework for the simulation of networks of spiking neurons. In: Proceedings of the 11th European Symposium on Artifical Neural Networks, ESANN 2003, pp. 295–300 (2003)Google Scholar
  13. 13.
    Schrauwen, B.: Embedded spiking neural networks. In: Doctoraatssymposium Faculteit Toegepaste Wetenschappen, pages on CD–ROM. Universiteit Gent, Gent (December 2002)Google Scholar
  14. 14.
    Schrauwen, B., D‘Haene, M.: Compact digital hardware implementations of spiking neural networks. In: Van Campenhout, J. (ed.) Sixth FirW PhD Symposium, page on CD, 1 (2005)Google Scholar
  15. 15.
    Schrauwen, B., Van Campenhout, J.: Parallel hardware implementation of a broad class of spiking neurons using serial arithmetic. Proceedings of ESANN (2006) (To be published)Google Scholar
  16. 16.
    Softky, W.R.: Simple codes versus efficient codes. Current opinion in neurobiology 5, 239–247 (1995)CrossRefGoogle Scholar
  17. 17.
    Verstraeten, D., Schrauwen, B., Stroobandt, D.: Reservoir-based techniques for speech recognition, Accepted for publication at WCCI 2006 (2006)Google Scholar
  18. 18.
    Verstraeten, D., Schrauwen, B., Stroobandt, D., Van Campenhout, J.: Isolated word recognition with the liquid state machine: a case study. Information Processing Letters 95(6), 521–528 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michiel D’Haene
    • 1
  • Benjamin Schrauwen
    • 1
  • Dirk Stroobandt
    • 1
  1. 1.Department of Electronics and Information SystemsGhent UniversityGhentBelgium

Personalised recommendations