Temporal Processing in a Spiking Model of the Visual System

  • Christo Panchev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4131)


Increasing amount of evidence suggests that the brain has the necessary mechanisms to and indeed does generate and process temporal information from the very early stages of sensory pathways. This paper presents a novel biologically motivated model of the visual system based on temporal encoding of the visual stimuli and temporally precise lateral geniculate nucleus (LGN) spikes. The work investigates whether such a network could be developed using an extended type of integrate-and-fire neurons (ADDS) and trained to recognise objects of different shapes using STDP learning. The experimental results contribute further support to the argument that temporal encoding can provide a mechanism for representing information in the visual system and has the potential to complement firing-rate-based architectures toward building more realistic and powerful models.


Visual System Spike Train Lateral Geniculate Nucleus Primary Visual Cortex Visual Scene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reich, D.S., Mechler, F., Victor, J.D.: Temporal coding of contrast in primary visual cortex: When, what, and why. Journal of Neurophysiology 85(3), 1039–1050 (2001)Google Scholar
  2. 2.
    Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., Aertsen, A.: Dynamics of neuronal interaction in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995)CrossRefGoogle Scholar
  3. 3.
    Mainen, Z.F., Sejnowski, T.: Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995)CrossRefGoogle Scholar
  4. 4.
    de Ruyter van Steveninck, R.R., Lewen, G., Strong, S., Koberle, R., Bialek, W.: Reproducibility and variability in neural spike trains. Science 275, 1805–1808 (1997)CrossRefGoogle Scholar
  5. 5.
    Adorján, P., Levitt, J.B., Lund, J.S., Obermayer, K.: A model for the intra-cortical origin of orientation preference and tuning in macaque striate cortex. Visual Neuroscience 16, 303–318 (1999)CrossRefGoogle Scholar
  6. 6.
    Hirsch, J.A., Alonso, J.M., Reid, R.C., Martinez, L.M.: Synaptic integration in striate cortical simple cells. Journal of Neuroscience 18(22), 9517–9528 (1998)Google Scholar
  7. 7.
    Bair, W., Koch, C.: Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation 8(6), 1185–1202 (1996)CrossRefGoogle Scholar
  8. 8.
    Buracas, G., Zador, A., DeWeese, M., Albright, T.: Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20(5), 959–969 (1998)CrossRefGoogle Scholar
  9. 9.
    Bair, W.: Spike timing in the mammalian visual system. Current Opinion in Neurobiology 9, 447–453 (1999)CrossRefGoogle Scholar
  10. 10.
    Reinagel, P., Reid, R.C.: Temporal coding of visual information in the thalamus. Journal of Neuroscience 20(14), 5392–5400 (2000)Google Scholar
  11. 11.
    Reinagel, P., Reid, R.: Precise firing events are conserved across neurons. Journal of Neuroscience 22(16), 6837–6841 (2002)Google Scholar
  12. 12.
    Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Self-organisation, plasticity, and low-level visual phenomena in a laterally connected map model of the primary visual cortex. In: Goldstine, R., Schyns, P., Medin, D. (eds.) Perceptual Learning. Psychology of Learning and Motivation, vol. 36, pp. 257–308. Academic Press, San Diego (1997)Google Scholar
  13. 13.
    Sirosh, J., Miikkulainen, R.: Cooperative self-organisation of afferent and lateral connections in cortical maps. Biological Cybernetics 71(1), 65–78 (1994)MATHCrossRefGoogle Scholar
  14. 14.
    Sirosh, J.: A Self-Organizing Neural Network Model of the Primary Visual Cortex. PhD thesis, The University of Texas, Austin, TX (1995)Google Scholar
  15. 15.
    Delorme, A., Thorpe, S.: Face identification using one spike per neuron: resistance to image degradations. Neural Networks 14(6-7), 795–803 (2000)CrossRefGoogle Scholar
  16. 16.
    Van Rullen, R., Delorme, A., Thorpe, S.J.: Feed-forward contour integration in primary visual cortex based on asynchronous spike propagation. Neurocomputing 38-40(1-4), 1003–1009 (2001)CrossRefGoogle Scholar
  17. 17.
    Delorme, A.: Early cortical orientation selectivity: How fast shunting inhibition decodes the order of spike latencies. Journal of Computational Neuroscience 15, 357–365 (2003)CrossRefGoogle Scholar
  18. 18.
    Jeffreys, D.: Evoked potential studies of face and object processing. Visual Cognition 3, 1–38 (1996)CrossRefGoogle Scholar
  19. 19.
    Perrinet, L., Delorme, A., Thorpe, S.: Network of integrate-and-fire neurons using rank order coding a: how to implement spike timing dependant plasticity. Neurocomputing 38-40(1-4), 817–822 (2001)CrossRefGoogle Scholar
  20. 20.
    Delorme, A., Thorpe, S.: Spikenet: An event-driven simulation package for modelling large networks of spiking neurons. Network: Computation. Neural Systems 14, 613–627 (2003)CrossRefGoogle Scholar
  21. 21.
    Rolls, E.T., Deco, G.: Computational neuroscience of vision. Oxford University Press, Oxford (2002)Google Scholar
  22. 22.
    Panchev, C., Wermter, S.: Spike-timing-dependent synaptic plasticity from single spikes to spike trains. Neurocomputing 58-60, 365–371 (2004)CrossRefGoogle Scholar
  23. 23.
    Panchev, C., Wermter, S., Chen, H.: Spike-timing dependent competitive learning of integrate-and-fire neurons with active dendrites. In: Proceedings of the International Conference on Artificial Neural Networks, Madrid, Spain. LNCS, pp. 896–901. Springer, Heidelberg (2002)Google Scholar
  24. 24.
    Panchev, C.: Spatio-Temporal and Multimodal Processing in a Spiking Neural Mind of a Robot. PhD thesis, University of Sunderland (2005)Google Scholar
  25. 25.
    Panchev, C., Wermter, S.: Temporal sequence detection with spiking neurons: towards recognizing robot language instructions. Connection Science 18(1), 1–22 (2006)MATHCrossRefGoogle Scholar
  26. 26.
    Shapley, R.: A new view of the primary visual cortex. Neural Networks 17, 615–623 (2004)CrossRefGoogle Scholar
  27. 27.
    Ringach, D.L., Hawken, M.J., Shapley, R.: Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997)CrossRefGoogle Scholar
  28. 28.
    Albreght, D.G., Hamilton, D.B.: Striate cortex of monkey and cat: contrast response function. Journal of Neurophysiology 48, 217–237 (1982)Google Scholar
  29. 29.
    Gawne, T.J., Kjaer, T.W., Richmond, B.J.: Latency: another potential code for feature binding in striate cortex. Journal of Neurophysiology 76, 1356–1360 (1996)Google Scholar
  30. 30.
    Mechler, F., Victor, J.D., Purpura, K.P., Shapley, R.: Robust temporal coding of contrast by V1 neurons for transient but not steady-state stimuli. Journal of Neuroscience 18, 6583–6598 (1998)Google Scholar
  31. 31.
    Purpura, K., Chee-Orts, M.N., Optican, L.M.: Temporal encoding of texture properties in visual cortex of awake monkey. Society of Neuroscience Abstracts 19, 315 (1993)Google Scholar
  32. 32.
    Gallant, J.L., Shoup, R.E., Mazer, J.A.: A human extrastriate area functionally homologous to macaque V4. Neuron 27, 227–235 (2000)CrossRefGoogle Scholar
  33. 33.
    Pasupathy, A., Connor, C.E.: Shape representation in area V4: Position-specific tuning for boundary conformation. Journal of Neurophysiology 86(5), 2505–2519 (2001)Google Scholar
  34. 34.
    Ito, M., Tamura, H., Fujita, I., Tanaka, K.: Size and position invariance of neuronal responses in monkey inferotemporal cortex. Journal of Neurophysiology 173(1), 218–226 (1995)Google Scholar
  35. 35.
    Bruce, C., Desimone, R., Gross, C.G.: Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46(2), 369–384 (1981)Google Scholar
  36. 36.
    Kobatake, E., Wang, G., Tanaka, K.: Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. Journal of Neurophysiology 80(1), 324–330 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christo Panchev
    • 1
  1. 1.School of Computing and TechnologyUniversity of SunderlandSunderlandUnited Kingdom

Personalised recommendations